SAND2001-3515
Unlimited Release
Updated April 2003
Updated July 2004

DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis

Version 3.2 Reference Manual

Michael S. Eldred, Laura P. Swiler, David M. Gay, Shannon L. Brown
Optimization and Uncertainty Estimation Department

Anthony A. Giunta
Validation and Uncertainty Quantification Processes Department

Steven F. Wojtkiewicz, Jr.
Structural Dynamics and Smart Systems Department

William E. Hart, Jean-Paul Watson
Discrete Algorithms and Math Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185

Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flex-
ible and extensible interface between simulation codes and iterative analysis methods. DAKOTA con-
tains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification
with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least
squares methods; and sensitivity analysis with design of experiments and parameter study methods. These
capabilities may be used on their own or as components within advanced strategies such as surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing
object-oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design
and performance analysis of computational models on high performance computers.

This report serves as a reference manual for the commands specification for the DAKOTA software, pro-
viding input overviews, option descriptions, and example specifications.

Contents

1 DAKOTA Reference Manual

L1 Introduction e e
1.2 Input Specification Reference
1.3 Web ResoUrces i e

2 DAKOTA File Documentation

2.1 dakota.input.spec File Reference

3 Commands Introduction
31 OVEIVIEW . . o o
3.2 IDR Input Specification File
3.3 Common Specification Mistakes
3.4 Sampledakota.inFiles

3.5 Tabulardescriptions

4 Strategy Commands
4.1 Strategy Description
4.2 Strategy Specification
4.3 Strategy IndependentControls
4.4 Multilevel Hybrid Optimization Commands
4.5 Surrogate-based Optimization (SBO) Commands
4.6 Optimization Under Uncertainty Commands
47 Branchand Bound Commands
4.8 Multistart Iteration Commands
4.9 Pareto Set Optimization Commands
4.10 Single Method Commands

5 Method Commands
5.1 Method Description

6 CONTENTS

5.2 Method Specification 40
5.3 Method IndependentControls 41
54 DOT Methods o 46
55 NPSOL Method 47
5.6 CONMIN Methods 48
57 OPT++Methods 49
5.8 SGOPT Methods o 51
59 COLINY Methods 61
510 JEGA Methods e 64
5.11 LeastSquares Methods e 69
5.12 Nondeterministic Methods L 72
5.13 Design of Computer Experiments Methods 78
5.14 Parameter Study Methods 79
6 Variables Commands 83
6.1 \Variables Description e e 83
6.2 Variables Specification 85
6.3 \Variables Set Identifier 85
6.4 DesignVariables 86
6.5 Uncertain Variables 87
6.6 State Variables 91
7 Interface Commands 95
7.1 Interface Description e 95
7.2 Interface Specification 96
7.3 Interface Set Identifier 96
7.4 Application Interface 97
7.5 ApproximationlInterface 103
8 Responses Commands 109
8.1 Responses DesCription 109
8.2 Responses Specification. 110
8.3 Responses Set Identifier 111
8.4 ResponseLabels 111
8.5 Function Specification 112
8.6 Gradient Specification 115
8.7 Hessian Specification 117

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

CONTENTS 7

9 References 119

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 1

DAKOTA Reference Manual

Author:
Michael S. Eldred, Anthony A. Giunta, Laura P. Swiler, Steven F. Wojtkiewicz, Jr., William E. Hart,
Jean-Paul Watson, David M. Gay, Shannon L. Brown

1.1 Introduction

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexi-
ble, extensible interface between analysis codes and iteration methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods, uncertainty quantification with sampling, reli-
ability, and stochastic finite element methods, parameter estimation with nonlinear least squares methods,
and sensitivity/main effects analysis with design of experiments and parameter study capabilities. These
capabilities may be used on their own or as components within advanced strategies such as surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing
object-oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible problem-solving environment as well as a platform for
rapid prototyping of new solution approaches.

The Reference Manual focuses on documentation of the various input commands for the DAKOTA system.
It follows closely the structure of dakota.input.spec, the master input specification. For information on soft-
ware structure, refer to the Devel oper s Manual , and for a tour of DAKOTA features and capabilities,
refer to the Users Manual [Eldred et al., 2004a].

1.2 Input Specification Reference

In the DAKOTA system, the strategy creates and manages iterators and models. A model contains a set
of variables, an interface, and a set of responses, and the iterator operates on the model to map the vari-
ables into responses using the interface. In a DAKOTA input file, the user specifies these components
through strategy, method, variables, interface, and responses keyword specifications. The Reference Man-
ual closely follows this structure, with introductory material followed by detailed documentation of the
strategy, method, variables, interface, and responses keyword specifications:

Commands Introduction

file:../html/index.html

10 DAKOTA Reference Manual

Strategy Commands
Method Commands
Variables Commands
Interface Commands

Responses Commands

1.3 Web Resources

Project web pages are maintained at htt p: / / endo. sandi a. gov/ DAKOTA with software specifics
and documentation pointers provided at ht t p: / / endo. sandi a. gov/ DAKOTA/ sof t war e. ht nl,
and a list of publications provided at ht t p: / / endo. sandi a. gov/ DAKOTA/ r ef er ences. ht n

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

http://endo.sandia.gov/DAKOTA
http://endo.sandia.gov/DAKOTA/software.html
http://endo.sandia.gov/DAKOTA/references.html

Chapter 2

DAKOTA File Documentation

2.1 dakota.input.spec File Reference

File containing the input specification for DAKOTA.

2.1.1 Detailed Description

File containing the input specification for DAKOTA.

This file is used in the generation of parser system files which are compiled into the DAKOTA executable.
Therefore, this file is the definitive source for input syntax, capability options, and associated data inputs.
Refer to Instructions for Modifying DAKOTA'’s Input Specification for information on how to modify
the input specification and propagate the changes through the parsing system.

Key features of the input specification and the associated user input files include:

¢ In the input specification, required individual specifications are enclosed in { } , optional individual
specifications are enclosed in [], required group specifications are enclosed in (), optional group
specifications are enclosed in [], and either-or relationships are denoted by the | symbol. These
symbols only appear in dakota.input.spec; they must not appear in actual user input files.

o Keyword specifications (i.e., st r at egy, met hod, vari abl es,i nt er f ace,andr esponses)
are delimited by newline characters, both in the input specification and in user input files. Therefore,
to continue a keyword specification onto multiple lines, the back-slash character (\) is needed at
the end of a line in order to escape the newline. Continuation onto multiple lines is not required;
however, it is commonly used to enhance readability.

e Each of the five keywords in the input specification begins with a
<KEYWORD = nane>, <FUNCTION = handl er _nanme>
header which names the keyword and provides the binding to the keyword handler within DAKOTA’s

problem description database. In a user input file, only the name of the keyword appears (e.g.,
vari abl es).

12 DAKOTA File Documentation

e Some of the keyword components within the input specification indicate that the user must sup-
ply <I NTEGER>, <REAL>, <STRI NG>, <LI STof ><I NTEGER>, <L| STof ><REAL>, or
<LI STof ><STRI NG> data as part of the specification. In a user input file, the " =" is optional,
the <LI STof > data can be separated by commas or whitespace, and the <STRI NG> data are
enclosed in single quotes (e.g., ' t ext _book’).

e Inuser input files, input is order-independent (except for entries in lists of data), case insensitive, and
white-space insensitive. Although the order of input shown in the Sample dakota.in Files generally
follows the order of options in the input specification, this is not required.

e Inuser inputfiles, specifications may be abbreviated so long as the abbreviation is unique. For exam-
ple, the appl i cat i on specification within the interface keyword could be abbreviated as appl i c,
but should not be abbreviated as app since this would be ambiguous with appr oxi nat i on.

¢ In both the input specification and user input files, comments are preceded by #.

The dakota.input.spec file used in DAKOTA V3.2 is:

DO NOT CHANGE THI' S FI LE UNLESS YOU UNDERSTAND THE COVPLETE UPDATE PROCESS

Any changes made to the input specification require the manual nerging
of code fragnments generated by IDR into the DAKOTA code. |If this nanual
nerging is not performed, then libidr.a and the Dakota src files

(Probl enDescDB. C, keywordtable.C) will be out of synch which will cause
errors that are difficult to track. Please be sure to consult the
docunent ation i n Dakot a/ docs/ SpecChange. dox before you nodify the input
speci fication or otherwi se change the | DR subsystem

HoH H H HHHHHH

<KEYWORD = vari abl es>, <FUNCTI ON = vari abl es_kwhandl er >
[id_variabl es = <STRI NG|
[{continuous_design = <I NTEGER>}
[cdv_initial_point = <LI STof ><REAL>]
[cdv_| ower _bounds <L| STof ><REAL>]
[cdv_upper _bounds <L| STof ><REAL>]
[cdv_descriptors = <LI STof ><STRI N&]]
[{discrete_design = <| NTEGER>}
[ddv_initial _point = <LI STof ><| NTEGER>]
[ddv_I ower _bounds <LI| STof ><I NTEGER>]
[ddv_upper _bounds <LI| STof ><I NTEGER>]
[ddv_descriptors = <Ll STof ><STRI NG|]
[{normal _uncertain = <I NTEGER>}
{nuv_neans = <LI| STof ><REAL>}
{nuv_std_devi ati ons = <LI STof ><REAL>}
[nuv_di st _| ower _bounds = <LI STof ><REAL>]
[nuv_di st _upper _bounds = <LI| STof ><REAL>]
[nuv_descriptors = <LI STof ><STRI N&]]
[{lognormal _uncertain = <I| NTEGER>}
{I nuv_means = <LI STof ><REAL>}
{I'nuv_std_devi ati ons = <LI STof ><REAL>}
| {Inuv_error_factors = <L| STof ><REAL>}
[nuv_di st _I ower _bounds = <LI STof ><REAL>]
[I nuv_di st _upper _bounds = <LI STof ><REAL>]
[I nuv_descriptors = <LI STof ><STRI N&]]
[{uniformuncertain = <I NTEGER>}
{uuv_di st _| ower _bounds = <LI| STof ><REAL>}
{uuv_di st _upper_bounds = <LI| STof ><REAL>}
[uuv_descriptors = <LI STof ><STRI NG|]
[{loguniformuncertain = <l| NTEGER>}
{l'uuv_di st _| ower _bounds = <LI STof ><REAL>}
{l'uuv_di st _upper _bounds = <LI STof ><REAL>}

e e e e e e e e e e e e o e e e e e e e o e e r — — — — —

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

13

[luuv_descriptors = <LI STof ><STRI N&]]
[{weibull _uncertain = <|I NTEGER>}

{wuv_al phas = <LI STof ><REAL>}

{wuv_betas = <L| STof ><REAL>}

[wuv_di st _| ower _bounds = <LI STof ><REAL>]

[wuv_di st _upper _bounds = <LI| STof ><REAL>]

[wuv_descriptors = <LI STof ><STRI NG]]

[{histogram uncertain = <l| NTEGER>}
[{huv_num bi n_pairs = <LI| STof ><| NTEGER>}
{huv_bi n_pairs = <LI STof ><REAL>}]
[{huv_num poi nt_pairs = <LI STof ><I NTEGER>}
{huv_poi nt _pairs = <L| STof ><REAL>}]

[huv_descriptors = <LI STof ><STRI NG|]
[uncertain_correlation_matrix = <L| STof ><REAL>]
[{continuous_state = <I NTEGER>}

[csv_initial _state = <LI STof ><REAL>]

[csv_| ower _bounds <L| STof ><REAL>]

[csv_upper _bounds <L| STof ><REAL>]

[csv_descriptors = <LI STof ><STRI N&]]

[{discrete_state = <I NTEGER>}

[dsv_initial _state = <LI STof ><| NTEGER>]

[dsv_I ower _bounds <LI| STof ><I NTEGER>]

[dsv_upper _bounds <LI STof ><I NTEGER>]

[dsv_descriptors = <Ll STof ><STRI NG|]

<KEYWORD = interface> <FUNCTION = interface_kwhandl er>

[id_interface = <STRI NG|
({application}
{anal ysi s_drivers = <LI STof ><STRI NG>}
[input _filter = <STRI NG|
[output _filter = <STRI NG|
({systent
[paraneters_file = <STRI NG|
[results_file = <STRI NG|
[anal ysi s_usage = <STRI NG|
[aprepro] [file_tag] [file_save])

({fork}
[paraneters_file = <STRI NG|
[results_file = <STRI NG]
[aprepro] [file_tag] [file_save])

({direct}
[processors_per_anal ysi s <| NTEGER>]
[processors_per_anal ysi s <LI STof ><I NTEGER>]
[nodel center _file = <STRING])

({grid}
{host names = <LI| STof ><STRI NG>}
[processors_per_host = <LI STof ><I NTEGER>])
[{asynchronous} [eval uation_concurrency = <I NTEGER>]
[anal ysi s_concurrency = <I NTEGER>]]
[eval uati on_servers = <| NTEGER>]
[eval uati on_sel f _schedul i ng]
[eval uati on_static_schedul i ng]
[anal ysi s_servers = <I NTEGER>]
[anal ysi s_sel f _schedul i ng]
[anal ysi s_static_schedul i ng]
[{failure_capture} {abort} | {retry = <INTEGER>} |
{recover = <LI| STof ><REAL>} | {continuation}]
[{deactivate} [active_set_vector] [eval uation_cache]
[restart_file]])
|
({approxi mation}
({global}

i i g

o o o o o e e o e e —

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

14 DAKOTA File Documentation

{neural _network} | {mars} | {hermte} | \

({polynom al} {linear} | {quadratic} | {cubic}) | \

({kriging} [correlations = <LI STof ><REAL>]) \

[dace_net hod_poi nter = <STRI NG| \

[{reuse_sanples} {all} | {region} | \

{samples_file = <STRI NG}] \

[{correction} \

{additive} | {multiplicative} | {conbined} \

{zeroth_order} | {first_order} | {second_order}] \

[{rebuild} {inactive_all} | {inactive_region}] \
[use_gradients]) \

| \

({rmultipoint} \

{tana?} [use_gradients?] [correction?] \
{actual _interface_pointer = <STRING}) \

| \

({local} \

{tayl or_seri es} \

{actual _interface_pointer = <STRI NG} \

[actual _interface_responses_pointer = <STRING]) \

| \

({hierarchical} \

{low fidelity_interface_poi nter = <STRI NG} \
{high_fidelity_interface_pointer = <STRI NG} \

{high_fidelity_interface_responses_poi nter = <STRI NG}\
{interface_pointer_hierarchy = <LI STof ><STRI NG>} \
({correction} \

{additive} | {multiplicative} | {conbined} \

{zeroth_order} | {first_order} | {second_order})))

<KEYWORD = responses>, <FUNCTION = responses_kwhandl er > \
[id_responses = <STRI NG| \
[response_descriptors = <LI STof ><STRI NG| \
({num_objective_functions = <| NTEGER>} \
[mul ti_objective_weights = <LI STof ><REAL>] \

[{num_nonlinear_inequality_constraints = <l NTEGER>} \
[nonlinear_inequality_| ower_bounds = <L| STof ><REAL>] \
[nonl i near _i nequal i ty_upper _bounds = <L| STof ><REAL>]] \

[{num_nonlinear_equality_constraints = <| NTEGER>} \
[nonlinear_equality_ targets = <Ll STof ><REAL>]]) \

| \
({num_| east _squares_terns = <| NTEGER>} \
[{num_nonlinear_inequality_constraints = <I NTEGER>} \
[nonlinear_inequality_|l ower_bounds = <LI| STof ><REAL>] \
[nonlinear_i nequal i ty_upper_bounds = <LI| STof ><REAL>]] \

[{num_nonlinear_equality_constraints = <| NTEGER>} \
[nonlinear_equality_ targets = <LI STof ><REAL>]]) \

| \
{num response_functi ons = <| NTEGER>} \
{no_gradi ent s} \
| \
({nunerical _gradients} \
[{method_source} {dakota} | {vendor}] \

[{interval _type} {forward} | {central}] \
[fd_step_size = <LI STof ><REAL>]) \

| \
{anal yti c_gradi ent s} \
| \
({m xed_gr adi ent s} \
{id_nunerical = <LI STof ><| NTEGER>} \

[{rethod_source} {dakota} | {vendor}] \

[{interval _type} {forward} | {central}] \
[fd_step_size = <LI STof ><REAL>] \

{id_anal ytic = <LI STof ><I NTEGER>}) \
{no_hessi ans} \

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

{anal yti c_hessi ans}

<KEYWORD = strategy> <FUNCTION = strategy_kwhandl er >
[graphi cs]
[{tabul ar_graphics_data} [tabul ar_graphics_file = <STRING]]
[iterator_servers = <I NTEGER>]
[iterator_sel f_scheduling] [iterator_static_scheduling]
({rmulti_level}
({uncoupl ed}
[{adaptive} {progress_threshold = <REAL>}]
{nmethod_I| i st = <LI STof ><STRI NG})
I
({coupl ed}
{gl obal _nmet hod_poi nter = <STRI NG}
{l ocal _nmet hod_poi nter = <STRI NG}
[l ocal _search_probability = <REAL>]))
|
({surrogate_based_opt}
{opt _nmet hod_poi nter = <STRI NG}
[max_iterations = <I NTEGER>]
[conver gence_t ol erance = <REAL>]
[soft _convergence_limt = <I NTEGER>]
[truth_surrogat e_bypass]
[{trust_region}
[initial_size = <REAL>]
[m ni num si ze = <REAL>]
[contract _region_threshold = <REAL>]
[expand_regi on_t hreshol d = <REAL>]
[contraction_factor = <REAL>]
[expansi on_factor = <REAL>]])
I
({opt_under _uncertainty}
{opt _nmet hod_poi nter = <STRI NG})
I
({branch_and_bound}
{opt _nmet hod_poi nter = <STRI NG}
[num sanpl es_at _r oot <| NTEGER>]
[num sanpl es_at _node = <I NTEGER>])

({rmulti_start}
{nmet hod_poi nter = <STRI NG}
[{random starts <I NTEGER>} [seed = <INTEGER>]]
[starting_points <LI| STof ><REAL>])

I
({pareto_set}
{opt _nmet hod_poi nter = <STRI NG}
[{random wei ght _sets = <I NTEGER>} [seed = <I| NTEGER>]]
[mul ti _objective_weight_sets = <LI| STof ><REAL>])
|
({singl e_nethod}
[met hod_poi nter = <STRING>])

<KEYWORD = et hod>, <FUNCTI ON = net hod_kwhandl er >
[id_met hod = <STRI NG|
[{nodel _type}
[vari abl es_poi nt er= <STRI NG|
[responses_poi nter = <STRI NG|
({single} [interface_pointer = <STRING])
| ({nested} {sub_nethod_pointer = <STRI NG}

[{interface_pointer = <STRI NG}
{interface_responses_poi nter = <STRI NG}]
[primary_mapping_nmatrix = <LI STof ><REAL>]
[secondary_nappi ng_matri x = <LI STof ><REAL>])

| ({layered} {interface_pointer = <STRING})]

o e o e —

L

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

16

DAKOTA File Documentation

[specul ati ve]

[

{out put} {debug} | {verbose} | {quiet} | {silent}]

[max_iterations = <I NTEGER>]
[max_function_eval uations = <l NTEGER>]
[constraint_tol erance = <REAL>]

[convergence_t ol erance = <REAL>]
[l'inear_inequality_constraint_matrix

[l'inear _i nequal ity_| ower _bounds = <L| STof ><REAL>]
[linear_inequality_upper_bounds = <LI STof ><REAL>]

[linear_equality_constraint_matrix =

[linear_equality_ targets = <Ll STof ><REAL>]

(

I
(

—— o~ —

{dot _frcg}

[{optim zation_type} {minimze} | {maximze}])

{dot _rmf d}

[{optim zation_type} {mnimze} | {maximze}])

{dot _bf gs}

[{optim zation_type} {mnimze} | {maximze}])

{dot _sl p}

[{optim zation_type} {minimze} | {maximze}])

{dot _sqp}

[{optim zation_type} {mnimze} | {maximze}])

{conmi n_frcg})
{conmi n_nfd})
{npsol _sqp}

[verify_level = <INTEGER>]
[function_precision = <REAL>]

[linesearch_tol erance = <REAL>])

{nl ssol _sqp}
[verify_level = <INTEGER>]
[function_precision = <REAL>]
[li nesearch_tol erance = <REAL>])
{nl 2so0l }
[afctol = <REAL>] [auxprt =
[covreq = <INTEGER>] [deltal =
[dl tfdc = <REAL>] [function
[1max0 = <REAL>] [l maxs =
[outlev = <INTEGER>] [rdreq =
[rfctol = <REAL>] [sctol =
[xctol = <REAL>] [xftol =

{reduced_sqp})

{optpp_cg}

[max_step = <REAL>] [gradient_tol erance = <REAL>])

{opt pp_q_new on}

[{search_nethod} {val ue_based_line_search} |
{gradi ent _based_l i ne_search} | {trust_region} |

{tr_pds}]

[max_step = <REAL>] [gradient_tol erance =
[merit_function = <STRING>] [central _path = <STRI NG>]
[stepl engt h_to_boundary = <REAL>]
[centering_paranmeter = <REAL>])

{opt pp_f d_new on}

[{search_rmethod} {val ue_based_line_search} |

<

<L| STof ><REAL>]

LI STof ><REAL>]

<| NTEGER>]
<REAL>]
_precision = <REAL>]
<REAL>]
<| NTEGER>]
<REAL>]
<REAL>])

<REAL>]

o o o o e o e o e e e e e e o o e e e e e o e o e o o e o e o o o e o - — —

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

17

{gradi ent _based_line_search} | {trust_region} |
{tr_pds}]
[max_step = <REAL>] [gradient_tol erance = <REAL>]
[merit_function = <STRING>] [central _path = <STRI NG|
[stepl engt h_to_boundary = <REAL>]
[centering_paraneter = <REAL>])

({optpp_g_new on}
[{search_method} {val ue_based_line_search} |
{gradi ent _based_line_search} | {trust_region} |
{tr_pds}]
[max_step = <REAL>] [gradient_tol erance = <REAL>]
[merit_function = <STRING] [central _path = <STRI NG]
[stepl ength_to_boundary = <REAL>]
[centering_paraneter = <REAL>])

({opt pp_newt on}
[{search_nethod} {val ue_based_|ine_search} |
{gradi ent _based_l i ne_search} | {trust_region} |
{tr_pds}]
[max_step = <REAL>] [gradient_tol erance = <REAL>]
[merit_function = <STRING] [central _path = <STRI NG]
[stepl ength_to_boundary = <REAL>]
[centering_paranmeter = <REAL>])

({opt pp_pds}
[search_schene_si ze = <I NTEGER>])

({coliny_apps}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG|
[sol ution_accuracy = <REAL>]
{initial _delta = <REAL>} {threshol d_delta = <REAL>}
[contraction_factor = <REAL>])

({coliny_cobyl a}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG>])

({coliny_direct}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI N&])

({coliny_pga_real}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG>])

({coliny_nulti_start}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG>])

({coliny_pattern_search}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG|
[solution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[{stochastic} [seed = <INTEGER>]]
{initial _delta = <REAL>} {threshold_delta = <REAL>}
[{pattern_basis} {coordinate} | {sinplex}]
[total _pattern_size = <I NTEGER>]
[no_expansi on] [expand_after_success = <| NTEGER>]
[contraction_factor = <REAL>]
[{exploratory_noves} {multi_step} |

{adaptive_pattern} | {basic_pattern}])

({coliny_solis_wets}

P L S S L R L L L R S L L L L L L L)

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

18 DAKOTA File Documentation

[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG|
[sol ution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[seed = <I NTEGER>]
{initial _delta = <REAL>} {threshold_delta = <REAL>}
[no_expansi on] [expand_after_success = <| NTEGER>]
[contract_after_failure = <I NTEGER>]
[contraction_factor = <REAL>])
I
({coliny_m sc_solver}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI N&])
I
({sgopt_pga_real}
[sol ution_accuracy = <REAL>] [max_cpu_time = <REAL>]
[seed = <I NTEGER>] [popul ation_size = <| NTEGER>]
[{selection_pressure} {rank} | {proportional}]
[{repl acenent _type} {random = <| NTEGER>} |
{chc = <INTEGER>} | {elitist = <I NTEGER>}
[new_sol uti ons_generated = <I NTEGER>]]
[{crossover_type} {two_point} | {blend} | {uniforn}
[crossover_rate = <REAL>]]
[{rmutation_type} {replace_uniforn} |

({offset_normal} [mutation_scale = <REAL>]) |
({of fset_cauchy} [mutation_scal e = <REAL>]) |
({offset_uniforn} [mutation_scal e = <REAL>]) |

({offset_triangular} [nutation_scale = <REAL>])
[di nension_rate = <REAL>] [popul ation_rate = <REAL>]
[non_adaptive]])
I
({sgopt_pga_int}
[sol ution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[seed = <I NTEGER>] [popul ation_size = <| NTEGER>]
[{selection_pressure} {rank} | {proportional}]
[{replacerment _type} {random = <| NTEGER>} |
{chc = <INTEGER>} | {elitist = <I NTEGER>}
[new _sol utions_generated = <I NTEGER>]]
[{crossover_type} {two_point} | {unifornt}
[crossover _rate = <REAL>]]
[{nutation_type} {replace_uniforn} |
({offset_uniform [rutation_range = <I NTEGER>])
[di mension_rate = <REAL>]
[popul ation_rate = <REAL>]])
I
({sgopt_epsa}
[sol ution_accuracy = <REAL>] [max_cpu_tinme = <REAL>]
[seed = <I NTEGER>] [popul ation_size = <| NTEGER>]
[{selection_pressure} {rank} | {proportional}]
[{repl acenent _type} {random = <| NTEGER>} |
{chc = <INTEGER>} | {elitist = <I NTEGER>}
[new_sol uti ons_generated = <I NTEGER>]]
[{crossover_type} {two_point} | {uniform
[crossover_rate = <REAL>]]
[{rmutation_type} {unary_coord} | {unary_sinplex} |
({rmulti_coord} [dimension_rate = <REAL>]) |
({multi_sinplex} [dinmension_rate = <REAL>])
[mut ation_scal e = <REAL>] [mi n_scal e = <REAL>]
[popul ation_rate = <REAL>]]
[num partitions = <I NTECER>])
|
({sgopt_pattern_search}
[solution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[{stochastic} [seed = <I NTEGER>]]
{initial _delta = <REAL>} {threshol d_delta = <REAL>}
[{pattern_basis} {coordinate} | {sinplex}]

o o o o o e o o o e o e e

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

[total _pattern_size = <I NTEGER>]
[no_expansi on] [expand_after_success = <| NTEGER>]
[contraction_factor = <REAL>]
[{exploratory_noves} {rmulti_step} | {best_all} |
{best _first} | {biased_best_first} |
{adaptive_pattern} | {test}])
|
({sgopt_solis_wets}
[sol ution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[seed = <I| NTEGER>]
{initial _delta = <REAL>} {threshol d_delta = <REAL>}
[no_expansi on] [expand_after_success = <| NTEGER>]
[contract_after_failure = <I NTEGER>]
[contraction_factor = <REAL>])
|
({sgopt_strat_nt}
[sol ution_accuracy = <REAL>] [max_cpu_tinme = <REAL>]
[seed = <I NTEGER>] [batch_size = <| NTEGER>]
[partitions = <LI STof ><I NTEGER>])
|
({noga}
[seed = <I NTEGER>]
[{initialization_type} {randont | {unique_randon} |
{flat_file = <STRI NG}
[popul ation_size = <I NTEGER>]]
[{crossover_type} {rmulti_point_binary = <I NTEGER>} |
{mul ti _poi nt _paraneterized_bi nary = <| NTEGER>} |
{mul ti _poi nt_real = <|NTEGER>} |
({shuffle_randon} [num parents = <| NTEGER>]
[num of fspring = <I NTEGER>])
[crossover_rate = <REAL>]]
[{rmutation_type} {bit_randon} | {replace_uniforn} |

({offset_normal} [nutation_scale = <REAL>]) |
({offset_cauchy} [nutation_scale = <REAL>]) |
({offset_uniform [nutation_scale = <REAL>])

[popul ation_rate = <REAL>]]
[{selection_type} {roulette_wheel} |
{uni que_roul ette_wheel } |
({dom nation_count} [domi nation_cutoff = <I NTEGER>]
[shrinkage_percentage = <REAL>])])
I
({soga}
[seed = <I| NTEGER>]
[{initialization_type} {randont | {unique_randon} |
{flat_file = <STRI NG}
[popul ation_size = <I NTEGER>]]
[{crossover_type} {rmulti_point_binary = <I NTEGER>} |
{mul ti _poi nt _paraneterized_bi nary = <| NTEGER>} |
{mul ti _point_real = <|NTEGER>} |
({shuffle_randon} [num parents = <| NTEGER>]
[num of fspring = <I NTEGER>])
[crossover_rate = <REAL>]]
[{rmutation_type} {bit_randon} | {replace_uniforn} |

({offset_normal} [nutation_scale = <REAL>]) |
({offset_cauchy} [nutation_scale = <REAL>]) |
({offset_uniforn} [nutation_scale = <REAL>])

[popul ation_rate = <REAL>]]
[{selection_type} {favor_feasible} |
({roul ette_wheel}
[exterior_penalty_nultiplier = <REAL>]) |
(" {uni que_roul ette_wheel}
[exterior_penalty multiplier = <REAL>])]
[{convergence_type}
({best_fitness_tracker} [percent_change = <REAL>]
[num generations = <INTEGER>]) |

P L L L L L L L L L L L R L R L L)

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

20

DAKOTA File Documentation

({average_fitness_tracker} [percent_change = <REAL>]
[num generations = <INTEGER>])])
I
({nond_pol ynomi al _chaos}
{expansi on_terms = <| NTEGER>}
{expansi on_order = <| NTEGER>}
[seed = <I NTEGER>] [fixed_seed] [sanples = <| NTEGER>]
[{sanple_type} {randonm} | {lhs}]
[{distribution} {cunulative} | {conplenmentary}]
[{response_l evel s = <LI STof ><REAL>}
[num response_l evel s = <LI STof ><| NTEGER>]
[{conpute} {probabilities} | {reliabilities}]]
[{probability_levels = <LI STof ><REAL>}
[num probability_ |l evel s = <LI STof ><I NTEGER>]]
[{reliability_levels = <LI STof ><REAL>}
[numreliability_|evels = <LI STof ><I NTEGER>]])
|
({nond_sanpl i ng}
[seed = <INTEGER>] [fixed_seed] [sanples = <| NTEGER>]
[{sanple_type} {randon}t | {lhs}] [all _variables]
[{distribution} {cunulative} | {conplenmentary}]
[{response_l evel s = <LI STof ><REAL>}
[num response_l evel s = <LI STof ><| NTEGER>]
[{conpute} {probabilities} | {reliabilities}]]
[{probability_|levels = <LI STof ><REAL>}
[num probability_l evel s = <LI STof ><| NTEGER>]]
[{reliability_levels = <LI STof ><REAL>}
[numreliability_|evels = <LI STof ><I NTEGER>]])
|
({nond_reliability}
[{rmpp_search} {x_linearize_nean} | {x_linearize_npp}
{u_linearize_nean} | {u_linearize_npp}
{no_linearize} [sqgp] [nip]]
[{integration} {first_order} | {second_order}]
[{distribution} {cunulative} | {conplenmentary}]
[{response_| evel s = <LI STof ><REAL>}
[num response_| evel s = <LI STof ><| NTEGER>]
[{conpute} {probabilities} | {reliabilities}]]
[{probability_levels = <LI STof ><REAL>}
[num probability_l evel s = <LI STof ><| NTEGER>]]
[{reliability_levels = <LI STof ><REAL>}
[numreliability_levels = <LI STof ><I NTEGER>]])
I
({dace}
{grid} | {random} | {oas} | {lhs} | {oa_l hs}
{box_behnken} | {central _conposite}
[seed = <I NTEGER>] [fi xed_seed]
[sanpl es = <I NTEGER>] [synbols = <I NTEGER>])
|
({vector_paraneter_study}
({final _point = <LI STof ><REAL>}
{step_length = <REAL>} | {num steps = <INTEGER>})
I
({step_vector = <LI STof ><REAL>}
{num steps = <INTEGER>}))
|
({list_paraneter_study}
{list_of _points = <LI STof ><REAL>})
|

({centered_paraneter_study}
{percent_delta = <REAL>}
{del tas_per_variabl e = <I NTEGER>})
I
({mul tidi mparaneter_study}
{partitions = <L| STof ><| NTEGER>})

o e o o o e o o e o e

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

21

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

22

DAKOTA File Documentation

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 3

Commands I ntroduction

3.1 Overview

In the DAKOTA system, a strategy governs how each method maps variables into responses through the
use of an interface. Each of these five pieces (strategy, method, variables, responses, and interface) are
separate specifications in the user’s input file, and as a whole, determine the study to be performed during
an execution of the DAKOTA software. The number of strategies which can be invoked during a DAKOTA
execution is limited to one. This strategy, however, may invoke multiple methods. Furthermore, each
method may (in general) have its own "model," consisting of its own set of variables, its own interface, and
its own set of responses. Thus, there may be multiple specifications of the method, variables, interface, and
responses sections.

The syntax of DAKOTA specification is governed by the Input Deck Reader (IDR) parsing system
[Weatherby et al., 1996], which uses the dakota.input.spec file to describe the allowable inputs to the sys-
tem. This input specification file, then, provides a quick reference to the allowable system inputs from
which a particular input file (e.g., dakot a. i n) can be derived.

This Reference Manual focuses on providing complete details for the allowable specifications in an in-
put file to the DAKOTA program. Related details on the name and location of the DAKOTA program,
command line inputs, and execution syntax are provided in the Users Manual [Eldred et al., 2004a].

3.2 IDR Input Specification File

DAKOTA input is governed by the IDR input specification file. This file (dakota.input.spec) is used by a
code generator to create parsing system components which are compiled into the DAKOTA executable (re-
fer to Instructions for Modifying DAKOTA’s Input Specification for additional information). Therefore,
dakota.input.spec is the definitive source for input syntax, capability options, and optional and required ca-
pability sub-parameters. Beginning users may find this file more confusing than helpful and, in this case,
adaptation of example input files to a particular problem may be a more effective approach. However,
advanced users can master all of the various input specification possibilities once the structure of the input
specification file is understood.

Refer to the dakota.input.spec documentation for a listing of the current version and discussion of speci-
fication features. From this file listing, it can be seen that the main structure of the variables keyword is
that of ten optional group specifications for continuous design, discrete design, normal uncertain, lognor-

24 Commands Introduction

mal uncertain, uniform uncertain, loguniform uncertain, weibull uncertain, histogram uncertain, continu-
ous state, and discrete state variables. Each of these specifications can either appear or not appear as a
group. Next, the interface keyword requires the selection of either an application OR an approximation
interface. The type of application interface must be specified with either a system OR fork OR direct
OR grid required group specification, or the type of approximation interface must be specified with ei-
ther a global OR multipoint OR local OR hierarchical required group specification. Within the responses
keyword, the primary structure is the required specification of the function set (either optimization func-
tions OR least squares functions OR generic response functions), followed by the required specification
of the gradients (either none OR numerical OR analytic OR mixed) and the required specification of the
Hessians (either none OR analytic). The strategy specification requires either a multi-level OR surrogate-
based optimization OR optimization under uncertainty OR branch and bound OR multi-start OR pareto
set OR single method strategy specification. Lastly, the method keyword is the most lengthy specifica-
tion; however, its structure is relatively simple. The structure is simply that of a set of optional method-
independent settings followed by a long list of possible methods appearing as required group specifications
(containing a variety of method-dependent settings) separated by OR’s. Refer to Strategy Commands,
Method Commands, Variables Commands, Interface Commands, and Responses Commands for detailed
information on the keywords and their various optional and required specifications. And for additional
details on IDR specification logic and rules, refer to [Weatherby et al., 1996].

3.3 Common Specification Mistakes

Spelling and omission of required parameters are the most common errors. Less obvious errors include:

e Documentation of new capability sometimes lags the use of new capability in executables (especially
experimental executables from nightly builds). When parsing errors occur which the documentation
cannot explain, reference to the particular input specification used in building the executable (which
is installed alongside the executable) will often resolve the errors.

¢ Since keywords are terminated with the newline character, care must be taken to avoid following the
backslash character with any white space since the newline character will not be properly escaped,
resulting in parsing errors due to the truncation of the keyword specification.

e Care must be taken to include newline escapes when embedding comments within a keyword spec-
ification. That is, newline characters will signal the end of a keyword specification even if they are
part of a comment line. For example, the following specification will be truncated because one of
the embedded comments neglects to escape the newline:

No error here: new ine need not be escaped since coment is not enbedded

responses, \
No error here: newine is escaped \
num obj ective_functions =1 \
Error here: this coment nust escape the new ine
anal ytic_gradients \

no_hessi ans

In most cases, the IDR system provides helpful error messages which will help the user isolate the source
of the parsing problem.

3.4 Sample dakota.in Files

A DAKOTA input file is a collection of the fields allowed in the dakota.input.spec specification file which
describe the problem to be solved by the DAKOTA system. Several examples follow.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

3.4 Sample dakota.in Files 25

34.1 Samplel: Optimization

The following sample input file shows single-method optimization of the Textbook Example using
DOT’s modified method of feasible directions. A similar file is available in the test directory as
Dakot a/ t est / dakot a_t ext book.in.

strategy,\
si ngl e_net hod

met hod, \

dot _mmfd \
max_iterations = 50 \
convergence_tol erance = le-4 \
out put verbose

vari abl es, \

continuous_design = 2\
cdv_initial_point 0.9
cdv_upper _bounds 5.8
cdv_| ower _bounds 0.5
cdv_descri ptor ' x1

interface,\

application system\
anal ysis_driver = 'text_book’\
paraneters_file = ’'text_book.in"\
results file = 'text_book. out’\
file_tag fil e_save

responses, \

num obj ective_functions = 1\

num nonl i near _inequality_constraints = 2\
anal ytic_gradients \

no_hessi ans

3.4.2 Sample?2: Least Squares

The following sample input file shows a nonlinear least squares solution of the Rosenbrock Ex-
ample using OPT++’s Gauss-Newton method. A similar file is available in the test directory as
Dakot a/ t est/ dakot a_r osenbr ock.in.

strategy, \
si ngl e_net hod

nmet hod, \
opt pp_g_hewt on \
max_iterations = 50 \
convergence_tol erance = le-4

vari abl es, \
continuous_design = 2\
cdv_initial_point -1.2 1.0\

cdv_| ower _bounds -2.0 -2.0\

cdv_upper _bounds 2.0 2.0\

cdv_descri ptor T x1’ ' x2
interface,\

application system\

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

26 Commands Introduction

anal ysis_driver = 'rosenbrock’

responses, \
num | east _squares_terms = 2 \

anal ytic_gradients \

no_hessi ans

3.4.3 Sample 3: Nondeter ministic Analysis

The following sample input file shows Latin Hypercube Monte Carlo sampling using the Textbook Exam-
ple. A similar file is available in the test directory as Dakot a/ t est / dakot a_t ext book_| hs.in.

strategy,\
si ngl e_met hod graphi cs

net hod, \
nond_sanpling \
sanpl es = 100 seed = 12345 \
sanpl e_type | hs \
response_| evel s = 3. 6e+11 6.e+04 3.5e+05

vari abl es, \

normal _uncertain = 2\
nuv_neans
nuv_std_devi ati ons
nuv_descri ptor

uni formuncertain = 2\
uuv_di st _| ower _bounds
uuv_di st _upper _bounds

248.89, 593.33\
12. 4, 29.7 \
" TF1n’ " TF2n"\

199.3, 474.63\
298.5, 712. \

uuv_descri pt or = 'TF1u’ " TR2u' \
wei bul | _uncertain = 2\

wuv_al phas = 12., 30. \

wuv_bet as = 250., 590. \

wuv_descri ptor " TF1wW " TF2w

interface,\
appl i cati on system asynch eval uati on_concurrency = 5 \
anal ysis_driver = 'text_book’

responses, \

num response_functions = 3 \
no_gradi ents \

no_hessi ans

3.4.4 Sample4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Example. A similar
file is available in the test directory as Dakot a/ t est / dakot a_pst udy.in.

net hod, \
vect or _par anet er _study \
step_vector = .1 .1 .1\

numsteps = 4

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

3.4 Sample dakota.in Files 27

vari abl es, \
conti nuous_design = 3\

cdv_initial _point 1.0 1.0 1.0

interface,\

appl i cati on system asynchronous \
anal ysis_driver = 'text_book’

responses, \

num obj ective_functions = 1\

num nonl i near _inequality_constraints = 2\
anal ytic_gradients \

anal yti c_hessi ans

345 Sampleb5: Multilevel Hybrid Strategy

The following sample input file shows a multilevel hybrid strategy using three methods. It employs a
genetic algorithm, pattern search, and full Newton gradient-based optimization in succession to solve
the Textbook Example. A similar file is available in the test directory as Dakot a/ t est / dakot a_-
mul til evel .in.

strategy,\

graphics \

multi _| evel uncoupled \
method_list =" GA 'CPS ' NLP

met hod, \
id_method = 'GA'\
nmodel _type single \

vari abl es_pointer = 'V1'\
interface_pointer = "11'\
responses_pointer = 'RL’\

sgopt _pga_real \
popul ati on_size = 10 \
out put verbose

met hod, \
id_nmethod = 'PS'\
nmodel _type single \

vari abl es_pointer = 'V1'\
interface_pointer = "11'\
responses_pointer = 'RL’\

sgopt _pattern_search stochastic \
out put verbose \
initial _delta = 0.1\
threshold_delta = 1.e-4\
sol ution_accuracy = 1.e-10 \
expl oratory_noves best_first

met hod, \
id_nmethod = 'NLP'\
nodel _type single \

vari abl es_pointer = 'V1'\
interface_pointer = "11'\
responses_poi nter = 'R2’\

opt pp_newt on \
gradi ent _tolerance = 1.e-12 \
convergence_tol erance = 1.e-15

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

28 Commands Introduction

vari abl es, \

id_variables = "V1'\

conti nuous_design = 2 \
cdv_initial_point 0.6
cdv_upper _bounds 5.8
cdv_| ower _bounds 0.5
cdv_descri ptor T x1

.

S o

N © © ~
_

interface,\
id_interface = "11'\
application direct,\

anal ysis_driver = 'text_book’

responses, \
id_responses = 'R1'\
num obj ecti ve_functions
no_gradients \
no_hessi ans

1\

responses, \

id_responses = 'R2'\

num obj ective_functions = 1\
anal ytic_gradients \

anal yti c_hessi ans

Additional example input files, as well as the corresponding output and graphics, are provided in the Getting
Started chapter of the Users Manual [Eldred et al., 2004a].

3.5 Tabular descriptions

In the following discussions of keyword specifications, tabular formats (Tables 4.1 through 8.7) are used
to present a short description of the specification, the keyword used in the specification, the type of data
associated with the keyword, the status of the specification (required, optional, required group, or optional
group), and the default for an optional specification.

It can be difficult to capture in a simple tabular format the complex relationships that can occur when speci-
fications are nested within multiple groupings. For example, in an interface keyword, the par anet ers_-
fi | e specification is an optional specification within the syst emand f or k required group specifica-
tions, which are separated from each other and from other required group specifications (di r ect and
gri d) by logical OR’s. The selection between the syst em f or k, di rect, or gri d required groups
is contained within another required group specification (appl i cat i on), which is separated from the
appr oxi mat i on required group specification by a logical OR. Rather than unnecessarily proliferate the
number of tables in attempting to capture all of these inter-relationships, a balance is sought, since some
inter-relationships are more easily discussed in the associated text. The general structure of the following
sections is to present the outermost specification groups first (e.g., appl i cat i on in Tables 7.2 and 7.3),
followed by lower levels of specifications (e.g., syst emf or k, di rect, orgri d in Tables 7.4 through
7.7) in succession.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 4

Strategy Commands

4.1 Strategy Description

The strategy section in a DAKOTA input file specifies the top level technique which will govern the man-
agement of iterators and models in the solution of the problem of interest. Seven strategies currently exist:
mul ti _| evel, surrogate_based_opt, opt _under _uncertainty, branch_and_bound,
mul ti _start, pareto_set, and si ngl e_net hod. These algorithms are implemented within the
Strategy "Strategy" class hierarchy in the MultilevelOptStrategy, SurrBasedOptStrategy, NonDOpt-
Strategy, BranchBndStrategy, ConcurrentStrategy, and SingleMethodStrategy classes. For each of
the strategies, a brief algorithm description is given below. Additional information on the algorithm logic
is available in the Users Manual [Eldred et al., 2004a].

In a multi-level hybrid optimization strategy (mul ti _| evel), a list of methods is specified which will
be used synergistically in seeking an optimal design. The goal here is to exploit the strengths of different
optimization algorithms through different stages of the optimization process. Global/local hybrids (e.g.,
genetic algorithms combined with nonlinear programming) are a common example in which the desire for
identification of a global optimum is balanced with the need for efficient navigation to a local optimum.

In surrogate-based optimization (sur r ogat e_based_opt), optimization occurs using an approxima-
tion model, i.e., a surrogate model, that is built and periodically updated using data from a "truth" model.
The surrogate model can be a global data fit (e.g., a smoothing polynomial or an interpolation function
built from a design of computer experiments database), a multipoint approximation, a local Taylor Series
expansion, or a model hierarchy approximation (e.g., a low-fidelity simulation model), whereas the truth
model typically is a high-fidelity simulation model. A trust region strategy is used to manage the optimiza-
tion process to maintain acceptable accuracy between the surrogate model and the truth model (by limiting
the range over which the surrogate model is trusted). The process involves a sequence of optimization
runs performed on the surrogate model and bounded by the trust region. At the end of each optimization
run, the candidate optimum point found by the optimizer is evaluated using both the surrogate model and
the truth model. If sufficient decrease has been obtained in the truth model, the trust region is re-centered
around the candidate optimum point and the trust region will either shrink, expand, or remain the same
size depending on the accuracy with which the surrogate model predicted the truth model decrease. If
sufficient decrease has not been attained, the trust region center is not updated and the entire trust region
shrinks by a user-specified factor. The cycle then repeats with the construction of a new surrogate model,
an optimization run, and another test for sufficient decrease in the truth model. This cycle continues until
convergence is attained. The goals of surrogate-based optimization are to reduce the total number of truth
model simulations and, in the case of surface fit surrogate models, to smooth noisy data with an easily

30 Strategy Commands

navigated analytic function.

In optimization under uncertainty (opt _under _uncert ai nty), a nondeterministic method is used to
evaluate the effect of uncertain variables, modeled using probabilistic distributions, on responses of interest.
Statistics on these responses are then included in the objective and constraint functions of the optimization
problem (for example, to minimize probability of failure). The nondeterministic method may be nested
directly within the optimization function evaluations, or the expense of direct nesting can be mitigated
through the use of surrogates (using the sub-model recursion features of NestedModel, SurrLayered-
Model, and HierLayeredModel to combine surrogates with nested iteration). Commaon optimization under
uncertainty choices include surrogate-based optimization under uncertainty (which nests sampling-based
uncertainty quantification within surrogate-based optimization) and reliability-based design optimization
(which nests reliability analysis within gradient-based optimization).

In the branch and bound strategy (br anch_and_bound), mixed integer nonlinear programs (nonlinear
applications with a mixture of continuous and discrete variables) can be solved through the combination of
the PICO parallel branching algorithm with the nonlinear programming algorithms available in DAKOTA.
Since PICO supports parallel branch and bound techniques, multiple bounding operations can be per-
formed concurrently for different branches, which provides for concurrency in nonlinear optimizations
for DAKOTA. This is an additional level of parallelism, beyond those available for a single optimization
(concurrent evaluations within an optimizer, concurrent analyses within an evaluation, and multiprocessor
analyses). Branch and bound is applicable when the discrete variables can assume continuous values dur-
ing the solution process (i.e., the integrality conditions are relaxable). It proceeds by performing a series of
continuous-valued optimizations for different variable bounds which, in the end, drive the discrete variables
to integer values.

In the multi-start iteration strategy (nul ti _st art), a series of iterator runs are performed for different
values of parameters in the model. A common use is for multi-start optimization (i.e., different local
optimization runs from different starting points for the design variables), but the concept and the code are
more general. An important feature is that these iterator runs may be performed concurrently, similar to
the branch and bound strategy discussed above.

In the pareto set optimization strategy (par et o_set), a series of optimization runs are performed for
different weightings applied to multiple objective functions. This set of optimal solutions defines a "Pareto
set," which is useful for investigating design trade-offs between competing objectives. Again, these op-
timizations can be performed concurrently, similar to the branch and bound and multi-start strategies
discussed above. The code is similar enough to the mul ti _st art technique that both strategies are
implemented in the same ConcurrentStrategy class.

Lastly, the si ngl e_net hod strategy is a "fall through" strategy in that it does not provide control over
multiple iterators or multiple models. Rather, it provides the means for simple execution of a single iterator
on a single model.

Each of the strategy specifications identifies one or more method pointers (e.g., met hod_1I i st, opt _-
nmet hod_poi nt er) to identify the iterators that will be used in the strategy. These method pointers
are strings that correspond to the i d_net hod identifier strings from the method specifications (see
Method Independent Controls). These string identifiers (e.g., "NLP1") should not be confused with method
selections (e.g., dot _mmf d). Each of the method specifications identified in this manner has the responsi-
bility for identifying the variables, interface, and responses specifications (using var i abl es_poi nt er,
i nterface_pointer,andresponses_poi nt er from Method Independent Controls) that are used
to build the model used by the iterator. If a method specification does not provide a particular pointer, then
that component of the model will be built using the last specification parsed. In addition to method point-
ers, a variety of graphics options (e.g., t abul ar _gr aphi cs_dat a), iterator concurrency controls (e.g.,
i terator_servers),and strategy data (e.g., st arti ng_poi nt s) can be specified.

Specification of a strategy block in an input file is optional, with si ngl e_net hod being the default
strategy. If no strategy is specified or if si ngl e_net hod is specified without its optional met hod_ -
poi nt er specification, then the default behavior is to employ the last method, variables, interface, and

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

4.1 Strategy Description 31

responses specifications parsed. This default behavior is most appropriate if only one specification is
present for method, variables, interface, and responses, since there is no ambiguity in this case.

Example specifications for each of the strategies follow. Anul ti _| evel exampleis:

strategy, \
mul ti _| evel uncoupl ed \
nethod_list = 'GAl', 'CPS1l', ' NLPY

Asurrogat e _based_opt example specification is:

strategy, \
graphi cs \
surrogat e_based_opt \
opt _net hod_poi nter = ' NLP1’ \
trust_region initial_size = 0.10

Anopt _under _uncert ai nt y example specification is:

strategy, \
opt _under _uncertainty \
opt _net hod_poi nter = ' NLP1’

A branch_and_bound example specification is:

strategy, \
iterator_servers = 4 \
branch_and_bound \

opt _nmet hod_poi nter = ' NLPLl’

Anul ti _start example specification is:

strategy, \

mul ti_start \
met hod_poi nter = ' NLPL’ \
random starts = 10

A par et o_set example specification is:

strategy, \
pareto_set \
opt _net hod_poi nter = ' NLPI’ \
random wei ght _sets = 10

And finally, a si ngl e_mnet hod example specification is:

strategy, \
singl e_nmet hod \
nmet hod_poi nter = ' NLP1’

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

32 Strategy Commands

4.2 Strategy Specification

The strategy specification has the following structure:

strategy, \
<strategy i ndependent control s>\
<strategy sel ection>\

<strategy dependent control s>

where <strat egy sel ecti on> is one of the following: nul ti _| evel ,surrogate_based_-
opt, opt_under _uncertainty, branch_and_bound, nmulti_start, pareto_set, or
si ngl e_net hod.

The <strategy i ndependent control s> are those controls which are valid for a variety of
strategies. Unlike the Method Independent Controls, which can be abstractions with slightly different
implementations from one method to the next, the implementations of each of the strategy independent
controls are consistent for all strategies that use them. The <strat egy dependent control s>
are those controls which are only meaningful for a specific strategy. Referring to dakota.input.spec, the
strategy independent controls are those controls defined externally from and prior to the strategy selection
blocks. They are all optional. The strategy selection blocks are all required group specifications separated
by logical OR’s (mul ti _| evel ORsurrogat e _based_opt ORopt _under _uncertai ntyOR
branch_and_bound ORmulti _start OR pareto_set OR si ngl e_mnet hod). Thus, one and
only one strategy selection must be provided. The strategy dependent controls are those controls defined
within the strategy selection blocks. Defaults for strategy independent and strategy dependent controls
are defined in DataStrategy. The following sections provide additional detail on the strategy independent
controls followed by the strategy selections and their corresponding strategy dependent controls.

4.3 Strategy Independent Controls

The strategy independent controls include gr aphi cs, t abul ar _graphi cs_dat a, t abul ar _-
graphics file, iterator_servers, iterator_self _scheduling, and iterator_-
stati c_schedul i ng. The gr aphi cs flag activates a 2D graphics window containing history plots
for the variables and response functions in the study. This window is updated in an event loop with
approximately a 2 second cycle time. For applications utilizing approximations over 2 variables, a 3D
graphics window containing a surface plot of the approximation will also be activated. The t abul ar _-
gr aphi cs_dat a flag activates file tabulation of the same variables and response function history data
that gets passed to graphics windows with use of the gr aphi cs flag. Thet abul ar _graphics_file
specification optionally specifies a name to use for this file (dakot a_t abul ar. dat is the default).
Within the file, the variables and response functions appear as columns and each function evaluation pro-
vides a new table row. This capability is most useful for post-processing of DAKOTA results with 3rd
party graphics tools such as MATLAB, Tecplot, etc. There is no dependence between the gr aphi cs
flag and the t abul ar _gr aphi cs_dat a flag; they may be used independently or concurrently. The
iterator_servers,iterator_self_scheduling,anditerator_static_scheduling
specifications provide manual overrides for the number of concurrent iterator partitions and the schedul-
ing policy for concurrent iterator jobs. These settings are normally determined automatically in the
parallel configuration routines (see ParallelLibrary) but can be overridden with user inputs if desired.
The gr aphi cs, tabul ar _gr aphi cs_dat a, and t abul ar _graphi cs_fi | e specifications are
valid for all strategies. However, the i t erat or _servers,iterator_sel f_schedul i ng, and
i terator_static_schedul i ngoverrides are only useful inputs for those strategies supporting con-
currency in iterators, i.e., branch_and_bound, mul ti _start,and pareto_set (opt _under -
uncert ai nt'y will support this in the future once full NestedModel parallelism support is in place).
Table 4.1 summarizes the strategy independent controls.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

4.4 Multilevel Hybrid Optimization Commands 33

Description Keyword Associated Data | Status Default
Graphics flag graphi cs none Optional no graphics
Tabulation of tabul ar _- none Optional group no data tabulation
graphics data graphi cs_-
dat a
File name for tabul ar_- string Optional dakot a_-
tabular graphics graphi cs_- t abul ar . dat
data file
Number of iterator_- integer Optional no override of
iterator servers servers auto configure
Self-scheduling iterator - none Optional no override of
of iterator jobs sel f_- auto configure
schedul i ng
Static scheduling | iterator_- none Optional no override of
of iterator jobs static_- auto configure
schedul i ng

Table 4.1: Specification detail for strategy independent controls

4.4 Multilevel Hybrid Optimization Commands

The multi-level hybrid optimization strategy has uncoupl ed, uncoupl ed adapti ve, and coupl ed
approaches (see the Users Manual for more information on the algorithms employed). In the two uncoupled
approaches, a list of method strings supplied with the met hod_I1 i st specification specifies the identity
and sequence of iterators to be used. Any number of iterators may be specified. The uncoupled adaptive
approach may be specified by turning on the adapt i ve flag. If this flag in specified, then pr ogr ess_ -
t hr eshol d must also be specified since it is a required part of adaptive specification. In the nonadaptive
case, method switching is managed through the separate convergence controls of each method. In the
adaptive case, however, method switching occurs when the internal progress metric (normalized between
0.0 and 1.0) falls below the user specified pr ogr ess_t hr eshol d. Table 4.2 summarizes the uncoupled
multi-level strategy inputs.

Description Keyword Associated Data | Status Default

Multi-level multi _|evel none Required group N/A

hybrid strategy (1 of 7 selections)

Uncoupled uncoupl ed none Required group N/A

hybrid (1 of 2 selections)

Adaptive flag uncoupl ed none Optional group nonadaptive
hybrid

Adaptive progress_- real Required N/A

progress t hr eshol d

threshold

List of methods met hod_| i st list of strings Required N/A

Table 4.2: Specification detail for uncoupled multi-level strategies

In the coupl ed approach, global and local method strings supplied with the gl obal _net hod_-
poi nter and | ocal _nmet hod_poi nt er specifications identify the two methods to be used. The
| ocal _search_probabi |l ity setting is an optional specification for supplying the probability (be-
tween 0.0 and 1.0) of employing local search to improve estimates within the global search. Table 4.3
summarizes the coupled multi-level strategy inputs.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

34 Strategy Commands
Description Keyword Associated Data | Status Default
Multi-level multi _|evel none Required group N/A
hybrid strategy (1 of 7 selections)

Coupled hybrid coupl ed none Required group N/A
(1 of 2 selections)

Pointer to the gl obal _- string Required N/A

global method nmet hod_-

specification poi nt er

Pointer to the | ocal _- string Required N/A

local method nmet hod_-

specification poi nt er

Probability of | ocal _- real Optional 0.1

executing local search_-

searches probability

Table 4.3: Specification detail for coupled multi-level strategies

4.5 Surrogate-based Optimization (SBO) Commands

The surrogat e_based_opt strategy must specify an optimization method using opt _rret hod_ -
poi nt er. The method specification identified by opt _net hod_poi nt er is responsible for selecting
al ayer ed model for use as the surrogate (see Method Independent Controls). Algorithm controls include
max_it erati ons (the maximum number of SBO cycles allowed), conver gence_t ol er ance (the
relative tolerance used in internal SBO convergence assessments), sof t _conver gence_|l i m t (asoft
convergence control for the SBO iterations which limits the number of consecutive iterations with im-
provement less than the convergence tolerance), and t r ut h_sur r ogat e_bypass (a flag for bypassing
all lower level surrogates when performing truth verifications on a top level surrogate). In addition, the
trust _regi on optional group specification can be used to specify the initial size of the trust region
(using i ni tial _si ze) relative to the total variable bounds, the minimum size of the trust region (us-
ing m ni mum_si ze), the contraction factor for the trust region size (using cont racti on_f act or)
used when the surrogate model is performing poorly, and the expansion factor for the trust region size
(using expansi on_f act or) used when the the surrogate model is performing well. Two additional
commands are the trust region size contraction threshold (using cont r act _r egi on_t hr eshol d)and
the trust region size expansion threshold (using expand_r egi on_t hr eshol d). These two commands
are related to what is called the trust region ratio, which is the actual decrease in the truth model divided
by the predicted decrease in the truth model in the current trust region. The command contract _-
regi on_t hr eshol d sets the minimum acceptable value for the trust region ratio, i.e., values below this
threshold cause the trust region to shrink for the next SBO iteration. The command expand_r egi on_-
t hr eshol d determines the trust region value above which the trust region will expand for the next SBO
iteration. Tables 4.4 and 4.5 summarize the surrogate based optimization strategy inputs.

4.6 Optimization Under Uncertainty Commands

The opt _under _uncert ai nt y strategy must specify an optimization iterator using opt _net hod_ -
poi nt er. In the case of a direct nesting of an uncertainty quantification iterator within the top level

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

4.7 Branch and Bound Commands 35

Description Keyword Associated Data | Status Default
Surrogate-based surrogate_- none Required group N/A
optimization based_opt (1 of 7 selections)

strategy

Optimization opt _nethod - | string Required N/A
method pointer poi nt er

Maximum max_- integer Optional 100
number of SBO iterations

iterations

Convergence real Optional le-4
tolerance for convergence_-

SBO iterations tol erance

Soft convergence | soft _- integer Optional 5

limit for SBO conver gence_-

iterations limt

Flag for truth_- none Optional no bypass
bypassing lower surrogate_-

level surrogates bypass

in truth

verifications

Table 4.4: Specification detail for surrogate based optimization strategies

model, the method specification identified by opt _net hod_poi nt er would select a nest ed model
(see Method Independent Controls). In the case of surrogate-based optimization under uncertainty, the
method specification identified by opt _net hod_poi nt er might select either a nest ed model or a
| ayer ed model, since the recursive properties of NestedModel, SurrLayeredModel, and HierLayered-
Model could be utilized to configure any of the following:

e "layered containing nested" (i.e., optimization of a data fit surrogate built using statistical data from
nondeterministic analyses)

e "nested containing layered" (i.e., optimization using nondeterministic analysis data evaluated from a
data fit or hierarchical surrogate)

e "layered containing nested containing layered" (i.e., combination of the two above: optimization of
a data fit surrogate built using statistical data from nondeterministic analyses, where the nondeter-
ministic analyses are performed on a data fit or hierarchical surrogate)

Since most of the sophistication is encapsulated within the nested and layered model classes (see
nested/layered specifications in Method Independent Controls), the optimization under uncertainty strat-
egy inputs are minimal. Table 4.6 summarizes these inputs.

4.7 Branch and Bound Commands

The branch_and_bound strategy must specify an optimization method using opt _rnet hod_-
poi nt er. This optimization method is responsible for computing optimal solutions to nonlinear pro-
grams which arise from different branches of the mixed variable problem. These branches correspond to
different bounds on the discrete variables where the integrality constraints on these variables have been
relaxed. Solutions which are completely feasible with respect to the integrality constraints provide an up-
per bound on the final solution and can be used to prune branches which are not yet integer-feasible and

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

36 Strategy Commands
Description Keyword Associated Data | Status Default
Trust region trust_regi on | none Optional group N/A
group
specification
Trust region initial _size | real Optional 0.4
initial size
(relative to
bounds)

Trust region m ni mum si ze | real Optional l.e-6
minimum size
Shrink trust contract _- real Optional 0.25
region if trust regi on_-
region ratio is t hreshol d
below this value
Expand trust expand_- real Optional 0.75
region if trust regi on_-
region ratio is t hreshol d
above this value
Trust region real Optional 0.25
contraction factor | contraction_-

factor
Trust region expansi on_- real Optional 2.0
expansion factor factor

Table 4.5: Specification detail for trust region controls in surrogate based optimization strategies

Description Keyword Associated Data | Status Default
Optimization opt _under _- none Required group N/A
under uncertainty | uncertainty (1 of 7 selections)

strategy

Optimization opt _nethod_- | string Required N/A
method pointer poi nt er

Table 4.6: Specification detail for optimization under uncertainty strategies

which have higher objective functions. The optional num sanpl es_at root and num sanpl es_-
at _node specifications specify the number of additional function evaluations to perform at the root of
the branching structure and at each node of the branching structure, respectively. These samples are se-
lected randomly within the current variable bounds of the branch. This feature is a simple way to globalize
the optimization of the branches, since nonlinear problems may be multimodal. Table 4.7 summarizes the
branch and bound strategy inputs.

4.8 Multistart Iteration Commands

Therul ti _start strategy must specify an iterator using met hod_poi nt er . This iterator is responsi-
ble for completing a series of iterative analyses from a set of different starting points. These starting points
can be specified as follows: (1) using r andom st ar t s, for which the specified number of starting points
are selected randomly within the variable bounds, (2) using st arti ng_poi nt s, in which the starting
values are provided in a list, or (3) using bothr andom st art sandst arti ng_poi nt s, for which the
combined set of points will be used. In aggregate, at least one starting point must be specified. The most

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

4.9 Pareto Set Optimization Commands

37

Description Keyword Associated Data | Status Default
Branch and branch_and_- | none Required group N/A
bound strategy bound (1 of 7 selections)
Optimization opt _nethod_- | string Required N/A
method pointer poi nt er

Number of num - integer Optional 0
samples at the sanpl es_at _-

branching root r oot

Number of num - integer Optional 0
samples at each sanpl es_at _-

branching node node

Table 4.7: Specification detail for branch and bound strategies

common example of a multi-start strategy is multi-start optimization, in which a series of optimizations
are performed from different starting values for the design variables. This can be an effective approach for

problems with multiple minima. Table 4.8 summarizes the multi-start strategy inputs.

Description Keyword Associated Data | Status Default
Multi-start multi _start none Required group N/A
iteration strategy (1 of 7 selections)
Method pointer nmet hod_- string Required N/A

poi nt er
Number of random - integer Optional group no random
random starting starts starting points
points
Seed for random seed integer Optional system-generated
starting points seed
List of starting - list of reals Optional no user-specified
user-specified poi nts starting points
starting points

4.9 Pareto Set Optimization Commands

Table 4.8: Specification detail for multi-start strategies

The par et 0_set strategy must specify an optimization method using opt _ret hod_poi nt er . This
optimizer is responsible for computing a set of optimal solutions from a set of multiobjective weightings.
These weightings can be specified as follows: (1) using r andom wei ght _set s, in which case weight-
ings are selected randomly within [0,1] bounds, (2) using mul ti _obj ecti ve_wei ght _sets, in
which the weighting sets are specified in a list, or (3) using both r andom wei ght _setsandnul ti _-
obj ecti ve_wei ght _set s, for which the combined set of weights will be used. In aggregate, at least
one set of weights must be specified. The set of optimal solutions is called the "pareto set," which can
provide valuable design trade-off information when there are competing objectives. Table 4.9 summarizes
the pareto set strategy inputs.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

38 Strategy Commands
Description Keyword Associated Data | Status Default
Pareto set pareto_set none Required group N/A
optimization (1 of 7 selections)
strategy
Optimization opt _nethod - | string Required N/A
method pointer poi nt er
Number of random - integer Optional no random
random wei ght _sets weighting sets
weighting sets
Seed for random | seed integer Optional system-generated
weighting sets seed
List of mul ti_- list of reals Optional no user-specified
user-specified obj ective_- weighting sets

weighting sets

wei ght _sets

Table 4.9: Specification detail for pareto set strategies

4.10 Single Method Commands

The single method strategy is the default if no strategy specification is included in a user input file. It
may also be specified using the si ngl e_net hod keyword within a strategy specification. An optional
nmet hod_poi nt er specification may be used to point to a particular method specification. If net hod_ -
poi nt er is not used, then the last method specification parsed will be used as the iterator. Table 4.10
summarizes the single method strategy inputs.

Description Keyword Associated Data | Status Default |
Single method single_- string Required group N/A
strategy nmet hod (1 of 7 selections)
Method pointer met hod_- string Optional use of last
poi nt er method parsed ‘

Table 4.10: Specification detail for single method strategies

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 5

Method Commands

5.1 Method Description

The method section in a DAKOTA input file specifies the name and controls of an iterator. The terms
"method" and "iterator" can be used interchangeably, although method often refers to an input specification
whereas iterator usually refers to an object within the Iterator hierarchy. A method specification, then,
is used to select an iterator from the iterator hierarchy, which includes optimization, uncertainty quantifi-
cation, least squares, design of experiments, and parameter study iterators (see Users Manual for more
information on these iterator branches). This iterator may be used alone or in combination with other it-
erators as dictated by the strategy specification (refer to Strategy Commands for strategy command syntax
and to the Users Manual for strategy algorithm descriptions).

Several examples follow. The first example shows a minimal specification for an optimization method.

met hod, \
dot _sqp

This example uses all of the defaults for this method.

A more sophisticated example would be

net hod, \
id_method = ' NLP1'\
nmodel _type single \
vari abl es_poi nt er
interface_pointer
responses_poi nt er
dot _sqgp \
max_iterations = 50 \
convergence_tol erance = le-4 \
out put verbose \
optim zati on_type mnimze

mn o n
Ars

This example demonstrates the use of identifiers and pointers (see Method Independent Controls) as
well as some method independent and method dependent controls for the sequential quadratic program-
ming (SQP) algorithm from the DOT library. The max_i t er ati ons, conver gence_t ol er ance,

40 Method Commands

and out put settings are method independent controls, in that they are defined for a variety of meth-
ods (see DOT method independent controls for DOT usage of these controls). The opti mi zati on_-
t ype control is a method dependent control, in that it is only meaningful for DOT methods (see
DOT method dependent controls).

The next example shows a specification for a least squares method.

nmet hod, \

opt pp_g_newt on \
max_iterations = 10 \
convergence_tol erance = 1.e-8 \
search_net hod trust_region \
gradient_tolerance = 1.e-6

Some of the same method independent controls are present along with a new set of method dependent con-
trols (sear ch_net hod and gr adi ent _t ol er ance) which are only meaningful for OPT++ methods
(see OPT++ method dependent controls).

The next example shows a specification for a nondeterministic iterator with several method dependent
controls (refer to Nondeterministic sampling method).

net hod, \

nond_sanpling \
sanpl es = 100 seed = 12345\
sanpl e_type | hs \
response_| evel s = 1000. 500

The last example shows a specification for a parameter study iterator where, again, each of the controls are
method dependent (refer to Vector parameter study).

net hod, \

vect or _paraneter _study \
step_vector = 1. 1. 1.\
num steps = 10

5.2 Method Specification

As alluded to in the examples above, the method specification has the following structure:

net hod, \
<net hod i ndependent control s>\
<met hod sel ecti on>\

<met hod dependent control s>

where <nethod sel ection> is one of the following: dot_frcg, dot_mmfd, dot_-
bfgs, dot_slp, dot_sqgp, conmn_frcg, conm n_nfd, npsol _sqgp, nlssol_sqp,
nl 2sol, reduced_sqgp, opt pp_cg, optpp_q_newt on, opt pp_fd_newt on, optpp_g -
newt on, opt pp_new on, opt pp_pds, col i ny_apps, col i ny_cobyl a, coliny_direct,
coliny _pga_real,coliny multi_start,coliny_pattern_search,coliny_solis_-
wets, and coliny_msc_solver, sgopt_pga real, sgopt _pga_int, sgopt_epsa,
sgopt _pattern_search, sgopt_solis_wets, sgopt_strat_nt, nond_pol ynom al _-
chaos, nond_sanpl i ng,nond _reliability,dace,vector paranmeter_study,list -
par armet er _st udy, cent ered_par amet er _study,ornul ti di m paranet er _st udy.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.3 Method Independent Controls 41

The <met hod i ndependent contr ol s> are those controls which are valid for a variety of meth-
ods. In some cases, these controls are abstractions which may have slightly different implementations
from one method to the next. The <met hod dependent contr ol s> are those controls which are
only meaningful for a specific method or library. Referring to dakota.input.spec, the method independent
controls are those controls defined externally from and prior to the method selection blocks. They are all
optional. The method selection blocks are all required group specifications separated by logical OR’s. The
method dependent controls are those controls defined within the method selection blocks. Defaults for
method independent and method dependent controls are defined in DataMethod. The following sections
provide additional detail on the method independent controls followed by the method selections and their
corresponding method dependent controls.

5.3 Method Independent Controls

The method independent controls include a method identifier string, a model type specification with point-
ers to variables, interface, and responses specifications, a speculative gradient selection, an output verbosity
control, maximum iteration and function evaluation limits, constraint and convergence tolerance specifica-
tions, and a set of linear inequality and equality constraint specifications. While each of these controls is
not valid for every method, the controls are valid for enough methods that it was reasonable to pull them
out of the method dependent blocks and consolidate the specifications.

The method identifier string is supplied with i d_ret hod and is used to provide a unique identifier string
for use with strategy specifications (refer to Strategy Description). It is appropriate to omit a method iden-
tifier string if only one method is included in the input file and si ngl e_net hod is the selected strategy
(all other strategies require one or more method pointers), since the single method to use is unambiguous
in this case.

The type of model to be used by the method is supplied with nodel _t ype and can be si ngl e, nest ed,
or | ayer ed (refer to Model for the class hierarchy involved). In the si ngl e model case, the optional
vari abl es_pointer,interface_pointer,andresponses_poi nt er specifications provide
strings for cross-referencing withi d_vari abl es,id_interface,andi d_r esponses string in-
puts from particular variables, interface, and responses keyword specifications. These pointers identify
which specifications will be used in building the single model, which is to be iterated by the method to map
the variables into responses through the interface. In the | ayer ed model case, the specification is similar,
except that the i nt er f ace_poi nt er specification is required in order to identify a global, multipoint,
local, or hierarchical approximation interface (see Approximation Interface) to use in the layered model. In
the nest ed model case, a sub_met hod_poi nt er must be provided in order to specify the nested iter-
ator,andi nt erface_poi nter andi nt erface_responses_poi nt er provide an optional group
specification for the optional interface portion of nested models (where i nt er f ace_poi nt er points to
the interface specification and i nt er f ace_r esponses_poi nt er points to a responses specification
describing the data to be returned by this interface). This interface is used to provide non-nested data,
which is then combined with data from the nested iterator using the pri mary_mappi ng_nat ri x and
secondary_mappi ng_rmat ri x inputs (refer to NestedModel::response_mapping() for additional in-
formation). In all cases, if a pointer string is specified and no corresponding id is available, DAKOTA will
exit with an error message. If no pointer string is specified, the last specification parsed will be used. It
is appropriate to omit this cross-referencing whenever the relationships are unambiguous due to the pres-
ence of only one specification. Since the method specification is responsible for cross-referencing with
the interface, variables, and responses specifications, identification of methods at the strategy layer is often
sufficient to completely specify all of the object interrelationships.

Tables 5.1 and 5.2 provides the specification detail for the method independent controls involving identi-
fiers, pointers, and model type controls.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

42

Method Commands

Description Keyword Associated Data | Status Default
Method set i d_net hod string Optional strategy use of
identifier last method
parsed
Model type nodel _type singl e | Optional group single
nested |
| ayered
Variables set vari abl es_- string Optional method use of
pointer poi nt er last variables
parsed
Interface set interface._- string singl e: singl e:
pointer poi nt er Optional, method use of
nest ed: last interface
Optional group, parsed,
| ayered: nested: no
Required optional
interface,
| ayered: N/A
Responses set responses._- string Optional method use of
pointer poi nt er last responses
parsed

Table 5.1: Specification detail for the method independent controls: identifiers, pointers, and model types

When performing gradient-based optimization in parallel, specul at i ve gradients can be selected to
address the load imbalance that can occur between gradient evaluation and line search phases. In a typical
gradient-based optimization, the line search phase consists primarily of evaluating the objective function
and any constraints at a trial point, and then testing the trial point for a sufficient decrease in the objective
function value and/or constraint violation. If a sufficient decrease is not observed, then one or more addi-
tional trial points may be attempted sequentially. However, if the trial point is accepted then the line search
phase is complete and the gradient evaluation phase begins. By speculating that the gradient information
associated with a given line search trial point will be used later, additional coarse grained parallelism can
be introduced by computing the gradient information (either by finite difference or analytically) in parallel,
at the same time as the line search phase trial-point function values. This balances the total amount of com-
putation to be performed at each design point and allows for efficient utilization of multiple processors.
While the total amount of work performed will generally increase (since some speculative gradients will
not be used when a trial point is rejected in the line search phase), the run time will usually decrease (since
gradient evaluations needed at the start of each new optimization cycle were already performed in parallel
during the line search phase). Refer to [Byrd et al., 1998] for additional details. The speculative specifi-
cation is implemented for the gradient-based optimizers in the DOT, CONMIN, and OPT++ libraries, and
it can be used with dakota numerical or analytic gradient selections in the responses specification (refer
to Gradient Specification for information on these specifications). It should not be selected with vendor
numerical gradients since vendor internal finite difference algorithms have not been modified for this pur-
pose. In full-Newton approaches, the Hessian is also computed speculatively. NPSOL and NLSSOL do not
support speculative gradients, as their gradient-based line search in user-supplied gradient mode (dakota
numerical or analytic gradients) is a superior approach for load-balanced parallel execution.

Output verbosity control is specified with out put followed by si | ent, qui et , ver bose or debug.
If there is no user specification for output verbosity, then the default setting is nor mal . This gives a total
of five output levels to manage the volume of data that is returned to the user during the course of a study,
ranging from full run annotation plus internal debug diagnostics (debug) to the bare minimum of output
containing little more than the total number of simulations performed and the final solution (si | ent).
Output verbosity is observed within the Iterator (algorithm verbosity), Model (synchronize/fd_gradients

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.3 Method Independent Controls 43
Description Keyword Associated Data | Status Default
Sub-method sub_net hod_- | string Required N/A
pointer for nested | poi nt er
models
Responses interface_- string Required within N/A
pointer for nested | r esponses_- optional group
model optional poi nt er
interfaces
Primary mapping | primary_- list of reals Optional no sub-iterator
matrix for nested | nmappi ng_- contribution to
models mat ri X primary functions
Secondary secondary_- list of reals Optional no sub-iterator
mapping matrix mappi ng_- contribution to
for nested models | matri x secondary

functions

Table 5.2: Specification detail for the method independent controls: nested models

verbosity), Interface (map/synch verbosity), Approximation (global data fit coefficient reporting),and
AnalysisCode (file operation reporting) class hierarchies; however, not all of these software components
observe the full granularity of verbosity settings. Specific mappings are as follows:

e out put sil ent (i.e., really quiet): silent iterators, silent model, silent interface, quiet approxima-
tion, quiet file operations

e out put qui et : quiet iterators, quiet model, quiet interface, quiet approximation, quiet file oper-
ations

e out put normal ;: normal iterators, normal model, normal interface, quiet approximation, quiet
file operations

e out put verbose: verbose iterators, normal model, verbose interface, verbose approximation,
verbose file operations

e out put debug (i.e., really verbose): debug iterators, normal model, debug interface, verbose
approximation, verbose file operations

Note that iterators and interfaces utilize the full granularity in verbosity, whereas models, approximations,
and file operations do not. With respect to iterator verbosity, different iterators implement this control in
slightly different ways (as described below in the method independent controls descriptions for each it-
erator), however the meaning is consistent. For models, interfaces, approximations, and file operations,
qui et suppresses parameter and response set reporting and si | ent further suppresses function evalua-
tion headers and scheduling output. Similarly, ver bose adds file management, approximation evaluation,
and global approximation coefficient details, and debug further adds diagnostics from nonblocking sched-
ulers.

The constrai nt _t ol er ance specification determines the maximum allowable value of infeasibility
that any constraint in an optimization problem may possess and still be considered to be satisfied. It is spec-
ified as a positive real value. If a constraint function is greater than this value then it is considered to be vi-
olated by the optimization algorithm. This specification gives some control over how tightly the constraints
will be satisfied at convergence of the algorithm. However, if the value is set too small the algorithm may
terminate with one or more constraints being violated. This specification is currently meaningful for the
NPSOL, NLSSOL, DOT and CONMIN constrained optimizers (refer to DOT method independent controls
and NPSOL method independent controls).

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

44 Method Commands

The conver gence_t ol er ance specification provides a real value for controlling the termination
of iteration. In most cases, it is a relative convergence tolerance for the objective function; i.e., if
the change in the objective function between successive iterations divided by the previous objective
function is less than the amount specified by convergence_tolerance, then this convergence criterion
is satisfied on the current iteration. Since no progress may be made on one iteration followed by
significant progress on a subsequent iteration, some libraries require that the convergence tolerance
be satisfied on two or more consecutive iterations prior to termination of iteration. This control is
used with optimization and least squares iterators (DOT, CONMIN, NPSOL, NLSSOL, OPT++, and
SGOPT) and is not used within the uncertainty quantification, design of experiments, or parameter study
iterator branches. Refer to DOT method independent controls, NPSOL method independent controls,
OPT++ method independent controls, and SGOPT method independent controls for specific interpreta-
tions of the conver gence_t ol er ance specification.

The max_iterati ons and max_functi on_eval uati ons controls provide integer limits for the
maximum number of iterations and maximum number of function evaluations, respectively. The difference
between an iteration and a function evaluation is that a function evaluation involves a single parameter
to response mapping through an interface, whereas an iteration involves a complete cycle of computation
within the iterator. Thus, an iteration generally involves multiple function evaluations (e.g., an iteration
contains descent direction and line search computations in gradient-based optimization, population and
multiple offset evaluations in nongradient-based optimization, etc.). This control is not currently used
within the uncertainty quantification, design of experiments, and parameter study iterator branches, and
in the case of optimization and least squares, does not currently capture function evaluations that occur
as part of the met hod_sour ce dakot a finite difference routine (since these additional evaluations are
intentionally isolated from the iterators).

Table 5.3 provides the specification detail for the method independent controls involving tolerances, limits,
output verbosity, and speculative gradients.

Description Keyword Associated Data | Status Default
Speculative specul ative none Optional no speculation
gradients and
Hessians
Output verbosity | out put silent | Optional nor nal
qui et |
ver bose |
debug
Maximum max_- integer Optional 100
iterations iterations
Maximum max_- integer Optional 1000
function function_-
evaluations eval uati ons
Constraint constraint_- | real Optional Library default
tolerance tol erance
Convergence real Optional l.e-4
tolerance convergence_-
tol erance

Table 5.3: Specification detail for the method independent controls: tolerances, limits, output verbosity,
and speculative gradients

Linear inequality constraints can be supplied withthel i near _i nequal ity _constraint_matri X,
linear _inequality | ower_bounds,andlinear_inequality_ upper_ bounds specifica-
tions, and linear equality constraints can be supplied with the | i near _equal i ty_constrai nt _-

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.3 Method Independent Controls 45

matrix and | i near _equal i ty_t ar get s specifications. In the inequality case, the constraint ma-
trix provides coefficients for the variables and the lower and upper bounds provide constraint limits for the
following two-sided formulation;

a; < Az < ay

As with nonlinear inequality constraints (see Objective and constraint functions (optimization data set)),
the default linear inequality constraint bounds are selected so that one-sided inequalities of the form

Az <0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous
DAKOTA versions). In a user bounds specification, any upper bound values greater than +bi gReal -
BoundSi ze (1.e+30, as defined in OptLeastSq) are treated as +infinity and any lower bound values less
than - bi gReal BoundSi ze are treated as -infinity. This feature is commonly used to drop one of the
bounds in order to specify a 1-sided constraint (just as the default lower bounds drop out since - DBL_MAX
< - bi gReal BoundSi ze). In the equality case, the constraint matrix again provides coefficients for the
variables and the targets provide the equality constraint right hand sides:

Ar = a
and the defaults for the equality constraint targets enforce a value of 0. for each constraint

Az =0.0

Currently, DOT, CONMIN, NPSOL, NLSSOL, and OPT++ all support specialized handling of linear con-
straints (either directly through the algorithm itself or indirectly through the DAKOTA wrapper). SGOPT
optimizers will support linear constraints in future releases. Linear constraints need not be computed by
the user’s interface on every function evaluation; rather the coefficients, bounds, and targets of the linear
constraints can be provided at start up, allowing the optimizers to track the linear constraints internally. It
is important to recognize that linear constraints are those constraints that are linear in the design variables,
e.g.
0.0 < 3z1 — 429 + 223 < 15.0
1+ 22+ 23 > 2.0
1 +x9 —23=1.0

which is not to be confused with something like
s(X) — Sfait < 0.0

where the constraint is linear in a response quantity, but may be a nonlinear implicit function of the design
variables. For the three linear constraints above, the specification would appear as:

linear_inequality_constraint_matrix = 3.0 -4.0 2.0 \

1.0 1.0 1.0 \
l'i near _i nequal ity_| ower_bounds = 0.0 2.0 \
|'i near _i nequal i ty_upper_bounds = 15.0 1.e+50 \
linear_equality_constraint_matrix = 1.0 1.0 -1.0 \
linear_equality targets = 1.0 \

where the 1.e+50 is a dummy upper bound value which defines a 1-sided inequality since it is greater
than bi gReal BoundSi ze. The constraint matrix specifications list the coefficients of the first constraint
followed by the coefficients of the second constraint, and so on. They are divided into individual constraints
based on the number of design variables, and can be broken onto multiple lines for readability as shown
above.

Table 5.4 provides the specification detail for the method independent controls involving linear constraints.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

46 Method Commands

Description Keyword Associated Data | Status Default
Linear inequality | | i near - list of reals Optional no linear
coefficient matrix | i nequality_- inequality
constraint_- constraints
mat ri X
Linear inequality | | i near - list of reals Optional vector values =
lower bounds i nequality_- - DBL_MAX
| ower bounds
Linear inequality | | i near - list of reals Optional vector values = 0.
upper bounds inequal ity -
upper _bounds
Linear equality linear - list of reals Optional no linear equality
coefficient matrix | equal ity_- constraints
constraint_-
mat ri x
Linear equality linear - list of reals Optional vector values = 0.
targets equality -
targets

Table 5.4: Specification detail for the method independent controls: linear inequality and equality con-
straints

5.4 DOT Methods

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear programming op-
timizers, specifically the Broyden-Fletcher-Goldfarb-Shanno (DAKOTA’s dot _bf gs method) and
Fletcher-Reeves conjugate gradient (DAKOTA’s dot _f r cg method) methods for unconstrained optimiza-
tion, and the modified method of feasible directions (DAKOTA’s dot _nmmf d method), sequential linear
programming (DAKOTA’s dot _s| p method), and sequential quadratic programming (DAKOTA’s dot _ -
sqp method) methods for constrained optimization. DAKOTA provides access to the DOT library through
the DOTOptimizer class.

54.1 DOT method independent controls

The method independent controls for max_i t er ati ons and nax_f uncti on_eval uati ons limit
the number of major iterations and the number of function evaluations that can be performed duringa DOT
optimization. The conver gence_t ol er ance control defines the threshold value on relative change
in the objective function that indicates convergence. This convergence criterion must be satisfied for two
consecutive iterations before DOT will terminate. The const rai nt _t ol er ance specification defines
how tightly constraint functions are to be satisfied at convergence. The default value for DOT constrained
optimizers is 0.003. Extremely small values for constraint_tolerance may not be attainable. The output
verbosity specification controls the amount of information generated by DOT: the si | ent and qui et set-
tings result in header information, final results, and objective function, constraint, and parameter informa-
tion on each iteration; whereas the ver bose and debug settings add additional information on gradients,
search direction, one-dimensional search results, and parameter scaling factors. DOT contains no parallel
algorithms which can directly take advantage of concurrent evaluations. However, if nuneri cal _-
gr adi ent s with met hod_sour ce dakot a is specified, then the finite difference function evaluations
can be performed concurrently (using any of the parallel modes described in the Users Manual). In ad-
dition, if specul ati ve is specified, then gradients (dakot a nunmeri cal or anal yti c gradients)
will be computed on each line search evaluation in order to balance the load and lower the total run time
in parallel optimization studies. Lastly, specialized handling of linear constraints is supported with DOT;
linear constraint coefficients, bounds, and targets can be provided to DOT at start-up and tracked internally.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.5 NPSOL Method 47

Specification detail for these method independent controls is provided in Tables 5.1 through 5.4.

5.4.2 DOT method dependent controls

DOT’s only method dependent control is opti mi zati on_t ype which may be either i ni i ze or
maxi m ze. DOT provides the only set of methods within DAKOTA which support this control; to convert
a maximization problem into the minimization formulation assumed by other methods, simply change the
sign on the objective function (i.e., multiply by -1). Table 5.5 provides the specification detail for the DOT
methods and their method dependent controls.

Description Keyword Associated Data | Status Default
Optimization m nimze| Optional group mnimze
type optim zation_|- maxi m ze

type

Table 5.5: Specification detail for the DOT methods

5.5 NPSOL Method

The NPSOL library [Gill et al., 1986] contains a sequential quadratic programming (SQP) implementation
(the npsol _sqp method). SQP is a nonlinear programming optimizer for constrained minimization.
DAKOTA provides access to the NPSOL library through the NPSOLOptimizer class.

5.5.1 NPSOL method independent controls

The method independent controls for max_i t er ati ons and nax_f uncti on_eval uati ons limit
the number of major SQP iterations and the number of function evaluations that can be performed during
an NPSOL optimization. The conver gence_t ol er ance control defines NPSOL’s internal optimal-
ity tolerance which is used in evaluating if an iterate satisfies the first-order Kuhn-Tucker conditions for a
minimum. The magnitude of conver gence_t ol er ance approximately specifies the number of signif-
icant digits of accuracy desired in the final objective function (e.g., conver gence_t ol erance=1.e-6
will result in approximately six digits of accuracy in the final objective function). The constrai nt _-
t ol er ance control defines how tightly the constraint functions are satisfied at convergence. The default
value is dependent upon the machine precision of the platform in use, but is typically on the order of 1.e-8
for double precision computations. Extremely small values for const r ai nt _t ol er ance may not be
attainable. The out put verbosity setting controls the amount of information generated at each major SQP
iteration: the si | ent and qui et settings result in only one line of diagnostic output for each major iter-
ation and print the final optimization solution, whereas the ver bose and debug settings add additional
information on the objective function, constraints, and variables at each major iteration.

NPSOL is not a parallel algorithm and cannot directly take advantage of concurrent evaluations. However,
if nuneri cal _gradi ent s with met hod_sour ce dakot a is specified, then the finite difference
function evaluations can be performed concurrently (using any of the parallel modes described in the Users
Manual). An important related observation is the fact that NPSOL uses two different line searches depend-
ing on how gradients are computed. For either anal yti c_gr adi ent s or nuneri cal _gradi ents
with met hod_sour ce dakot a, NPSOL is placed in user-supplied gradient mode (NPSOL’s "Derivative
Level" is set to 3) and it uses a gradient-based line search (the assumption is that user-supplied gradients
are inexpensive). On the other hand, if nuneri cal _gr adi ent s are selected with met hod_sour ce
vendor , then NPSOL is computing finite differences internally and it will use a value-based line search

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

48 Method Commands

(the assumption is that finite differencing on each line search evaluation is too expensive). The ramifica-
tions of this are: (1) performance will vary between et hod_sour ce dakot a and net hod_sour ce
vendor for nuneri cal _gradi ents, and (2) gradient speculation is unnecessary when performing
optimization in parallel since the gradient-based line search in user-supplied gradient mode is already load
balanced for parallel execution. Therefore, a specul at i ve specification will be ignored by NPSOL,
and optimization with numerical gradients should select met hod_sour ce dakot a for load balanced
parallel operation and met hod_sour ce vendor for efficient serial operation.

Lastly, NPSOL supports specialized handling of linear inequality and equality constraints. By specifying
the coefficients and bounds of the linear inequality constraints and the coefficients and targets of the linear
equality constraints, this information can be provided to NPSOL at initialization and tracked internally,
removing the need for the user to provide the values of the linear constraints on every function evaluation.
Refer to Method Independent Controls for additional information and to Tables 5.1 through 5.4 for method
independent control specification detail.

5.5.2 NPSOL method dependent controls

NPSOL’s method dependent controls are verify_ level, function_precision, and
i nesearch_tol erance. The verify_level control instructs NPSOL to perform finite
difference verifications on user-supplied gradient components. The f uncti on_pr eci si on control
provides NPSOL an estimate of the accuracy to which the problem functions can be computed. This is
used to prevent NPSOL from trying to distinguish between function values that differ by less than the
inherent error in the calculation. And the | i nesear ch_t ol er ance setting controls the accuracy of
the line search. The smaller the value (between 0 and 1), the more accurately NPSOL will attempt to
compute a precise minimum along the search direction. Table 5.6 provides the specification detail for the
NPSOL SQP method and its method dependent controls.

Description Keyword Associated Data | Status Default
Gradient verify |l evel | integer Optional -1 (no gradient
verification level verification)
Function function_- real Optional 1l.e-10
precision preci sion

Line search i nesearch_- | real Optional 0.9 (inaccurate
tolerance tol erance line search)

Table 5.6: Specification detail for the NPSOL SQP method

5.6 CONMIN Methods

The CONMIN library [Vanderplaats, 1973] is a public domain library of nonlinear programming optimiz-
ers, specifically the Fletcher-Reeves conjugate gradient (DAKOTA’s conmi n_f r cg method) method for
unconstrained optimization, and the method of feasible directions (DAKOTA’s conm n_nf d method) for
constrained optimization. As CONMIN was a predecessor to the DOT commercial library, the algorithm
controls are very similar. DAKOTA provides access to the CONMIN library through the CONMINOpti-
mizer class.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.7 OPT++ Methods 49

5.6.1 CONMIN method independent controls

The interpretations of the method independent controls for CONMIN are essentially identical to those for
DOT. Therefore, the discussion in DOT method independent controls is relevant for CONMIN.

5.6.2 CONMIN method dependent controls

CONMIN does not currently support any method dependent controls.

5.7 OPT++ Methods

The OPT++ library [Meza, 1994] contains primarily gradient-based nonlinear programming optimizers for
unconstrained, bound-constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gra-
dient (DAKOTA’s opt pp_cg method), quasi-Newton (DAKOTA’s opt pp_qg_newt on method), finite
difference Newton (DAKOTA’s opt pp_f d_newt on method), and full Newton (DAKOTA’s opt pp_-
newt on method). The conjugate gradient method is strictly unconstrained, and each of the Newton-based
methods are automatically bound to the appropriate OPT++ algorithm based on the user constraint spec-
ification (unconstrained, bound-constrained, or generally-constrained). In the generally-constrained case,
the Newton methods use a nonlinear interior-point approach to manage the constraints. The library also
contains a direct search algorithm, PDS (parallel direct search, DAKOTA’s opt pp_pds method), which
supports bound constraints. DAKOTA provides access to the OPT++ library through the SNLLOptimizer
class, where "SNLL" denotes Sandia National Laboratories - Livermore.

5.7.1 OPT++ method independent controls

The method independent controls for max_i t er at i ons and max_f uncti on_eval uati ons limit
the number of major iterations and the number of function evaluations that can be performed during an
OPT++ optimization. The conver gence_t ol er ance control defines the threshold value on relative
change in the objective function that indicates convergence. The out put verbosity specification con-
trols the amount of information generated from OPT++ executions: the debug setting turns on OPT++’s
internal debug mode and also generates additional debugging information from DAKOTA’s SNLLOpti-
mizer wrapper class. OPT++’s gradient-based methods are not parallel algorithms and cannot directly take
advantage of concurrent function evaluations. However, if nuneri cal _gr adi ent s with met hod_-
sour ce dakot a is specified, a parallel DAKOTA configuration can utilize concurrent evaluations for
the finite difference gradient computations. OPT++’s nongradient-based PDS method can directly exploit
asynchronous evaluations; however, this capability has not yet been implemented in the SNLLOptimizer
class.

The specul at i ve specification enables speculative computation of gradient and/or Hessian information,
where applicable, for parallel optimization studies. By speculating that the derivative information at the
current point will be used later, the complete data set (all available gradient/Hessian information) can be
computed on every function evaluation. While some of these computations will be wasted, the positive
effects are a consistent parallel load balance and usually shorter wall clock time. The specul ati ve
specification is applicable only when parallelism in the gradient calculations can be exploited by DAKOTA
(it will be ignored for vendor numeri cal gradients).

Lastly, linear constraint specifications are supported by each of the Newton methods (opt pp_new on,
opt pp_qg_newt on,opt pp_fd_newt on,and opt pp_g_newt on); whereas opt pp_cg must be un-
constrained and opt pp_pds can be, at most, bound-constrained. Specification detail for the method
independent controls is provided in Tables 5.1 through 5.4.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

50 Method Commands

5.7.2 OPT++ method dependent controls

OPT++’s method dependent controls are max_st ep, gradi ent _t ol erance, sear ch_net hod,
nmerit_function, central _path, stepl ength_to_boundary, centering_paraneter,
and search_schene_si ze. The max_st ep control specifies the maximum step that can be taken
when computing a change in the current design point (e.g., limiting the Newton step computed from
current gradient and Hessian information). It is equivalent to a move limit or a maximum trust region
size. The gr adi ent _t ol er ance control defines the threshold value on the L2 norm of the objective
function gradient that indicates convergence to an unconstrained minimum (no active constraints). The
gr adi ent _t ol er ance control is defined for all gradient-based optimizers.

max_st ep and gr adi ent _t ol er ance are the only method dependent controls for the OPT++ conju-
gate gradient method. Table 5.7 covers this specification.

Description Keyword Associated Data | Status Default
OPT++ conjugate | opt pp_cg none Required N/A
gradient method

Maximum step max_step real Optional 1000.
size

Gradient gradi ent - real Optional l.e-4
tolerance tol erance

Table 5.7: Specification detail for the OPT++ conjugate gradient method

The sear ch_net hod control is defined for all Newton-based optimizers and is used to select be-
tween trust _regi on, gradi ent _based | i ne_search, and val ue_based | i ne_search
methods. The gr adi ent _based_| i ne_sear ch option uses the line search method proposed by
[More and Thuente, 1994]. This option satisfies sufficient decrease and curvature conditions; whereas,
val ue_base | i ne_sear ch only satisfies the sufficient decrease condition. At each line search iter-
ation, the gr adi ent _based_| i ne_sear ch method computes the function and gradient at the trial
point. Consequently, given expensive function evaluations, the val ue_based_| i ne_sear ch method
is preferred to the gr adi ent _based_| i ne_sear ch method. Each of these Newton methods addi-
tionally supports the t r _pds selection for unconstrained problems. This option performs a robust trust
region search using pattern search techniques. Use of a line search is the default for bound-constrained
and generally-constrained problems, and use of at r ust _r egi on search method is the default for un-
constrained problems.

The nerit_function, central _path, steplength_to_boundary, and centering_-
par aret er selections are additional specifications that are defined for the solution of generally-
constrained problems with nonlinear interior-point algorithms. A nerit_functi on is a function in
constrained optimization that attempts to provide joint progress toward reducing the objective function and

satisfying the constraints. Valid string inputs are "el_bakry", "argaez_tapia", or "“van_shanno", where user
input is not case sensitive in this case. Details for these selections are as follows:

e The "el_bakry" merit function is the L2-norm of the first order optimality conditions for the nonlinear
programming problem. The cost per linesearch iteration is n+1 function evaluations. For more
information, see [El-Bakry et al., 1996].

e The "argaez_tapia" merit function can be classified as a modified augmented Lagrangian function.
The augmented Lagrangian is modified by adding to its penalty term a potential reduction function
to handle the perturbed complementarity condition. The cost per linesearch iteration is one function
evaluation. For more information, see [Tapia and Argaez].

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.8 SGOPT Methods 51

e The "van_shanno" merit function can be classified as a penalty function for the logarithmic barrier
formulation of the nonlinear programming problem. The cost per linesearch iteration is one function
evaluation. For more information see [Vanderbei and Shanno, 1999].

If the function evaluation is expensive or noisy, set the merit _functi on to "argaez_tapia" or "van_-
shanno".

The cent r al _pat h specification represents a measure of proximity to the central path and specifies an
update strategy for the perturbation parameter mu. Refer to [Argaez et al., 2002] for a detailed discussion
on proximity measures to the central region. Valid options are, again, "el_bakry", "argaez_tapia", or "van_-
shanno", where user input is not case sensitive. The default value for cent r al _pat h is the value of
merit_functi on (either user-selected or default). The st epl engt h_t o_boundar y specification
is a parameter (between 0 and 1) that controls how close to the boundary of the feasible region the algorithm
is allowed to move. A value of 1 means that the algorithm is allowed to take steps that may reach the
boundary of the feasible region. If the user wishes to maintain strict feasibility of the design parameters
this value should be less than 1. Default values are .8, .99995, and .95 for the "el_bakry", "argaez_-
tapia"”, and "van_shanno" merit functions, respectively. The cent eri ng_par anet er specification is a
parameter (between 0 and 1) that controls how closely the algorithm should follow the “central path". See
[Wright] for the definition of central path. The larger the value, the more closely the algorithm follows the
central path, which results in small steps. A value of 0 indicates that the algorithm will take a pure Newton

step. Default values are .2, .2, and .1 for the "el_bakry", "argaez_tapia", and "van_shanno" merit functions,
respectively.

Table 5.8 provides the details for the Newton-based methods.

The sear ch_schene_si ze is defined for the PDS method to specify the number of points to be used
in the direct search template. PDS does not support parallelism at this time due to current limitations in the
OPT++ interface. Table 5.9 provides the detail for the parallel direct search method.

5.8 SGOPT Methods

The SGOPT (Stochastic Global OPTimization) library [Hart, W.E., 2001a; Hart, W.E., 2001b] contains
a variety of nongradient-based optimization algorithms, with an emphasis on stochastic global meth-
ods. SGOPT currently includes the following global optimization methods: evolutionary algorithms
(sgopt _pga_real, sgopt _pga_int, and sgopt _epsa) and stratified Monte Carlo (sgopt _-
strat _nt). Additionally, SGOPT includes nongradient-based local search algorithms such as Solis-
Wets (sgopt _sol i s_wet s) and pattern search (sgopt _pat t er n_sear ch). With the exception of
the unconstrained sgopt _sol i s_wet s method, each of the SGOPT methods support bound constraints.
DAKOTA provides access to the SGOPT library through the SGOPTOptimizer class.

5.8.1 SGOPT method independent controls

The method independent controls for max_i t er ati ons and nax_f uncti on_eval uati ons limit
the number of major iterations and the number of function evaluations that can be performed during an
SGOPT optimization. The conver gence_t ol er ance control defines the threshold value on relative
change in the objective function that indicates convergence. The out put verbosity specification controls
the amount of information generated by SGOPT: the si | ent, qui et , and nor nal settings correspond
to minimal reporting from SGOPT, whereas the ver bose setting corresponds to a higher level of in-
formation, and debug outputs method initialization and a variety of internal SGOPT diagnostics. The
majority of SGOPT’s methods have independent function evaluations that can directly take advantage

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

52

Method Commands

Description Keyword Associated Data | Status Default
OPT++ optpp_q_- none Required group N/A
Newton-based newt on |
methods optpp_fd_-
newt on |
opt pp_newt on
Search method val ue_- none Optional group trust_region
based_line_- (unconstrained),
search | val ue_-
gradi ent - based line_-
based |line_- search
search | (bound/general
trust_region constraints)
|tr_pds
Maximum step max_step real Optional 1000.
size
Gradient gradi ent - real Optional l.e-4
tolerance tol erance
Merit function nerit_- string Optional "argaez_-
function tapi a"
Central path central _path | string Optional value of
nerit_-
function
Steplength to steplength - | real Optional Merit function
boundary t o_boundary dependent: 0.8
(el_bakry),
0.99995
(argaez_tapia),
0.95
(van_shanno)
Centering centering_- real Optional Merit function
parameter par anet er dependent: 0.2
(el_bakry), 0.2
(argaez_tapia),
0.1 (van_shanno)

Table 5.8: Specification detail for OPT++ Newton-based optimization methods

of DAKOTA’s parallel capabilities. Only sgopt _sol i s_wet s and certain expl or at ory_noves
options in sgopt _pattern_search (nul ti _step, best _first, biased_best_first,and
adapti ve_patt er n; see Pattern search) are inherently serial. The parallel methods automatically uti-
lize parallel logic when the DAKOTA configuration supports parallelism. Lastly, neither specul ati ve
gradients nor specialized handling of linear constraints are currently supported with SGOPT since SGOPT
methods are nongradient-based and support, at most, bound constraints. Specification detail for method
independent controls is provided in Tables 5.1 through 5.4.

5.8.2 SGOPT method dependent controls

sol ution_accuracy and max_cpu_ti ne are method dependent controls which are defined for all
SGOPT methods. Solution accuracy defines a convergence criterion in which the optimizer will terminate
if it finds an objective function value lower than the specified accuracy. The maximum CPU time setting is
another convergence criterion in which the optimizer will terminate if its CPU usage in seconds exceeds the

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.8 SGOPT Methods 53

Description Keyword Associated Data | Status Default
OPT++ parallel opt pp_pds none Required group N/A
direct search

method

Search scheme search_- integer Optional 32

size schene_si ze

Table 5.9: Specification detail for the OPT++ PDS method

specified limit. Table 5.10 provides the specification detail for these recurring method dependent controls.

Description Keyword Associated Data | Status Default
Desired solution sol ution_- real Optional - DBL_MAX
accuracy accuracy

Maximum max_cpu_tine | real Optional unlimited CPU
amount of CPU

time

Table 5.10: Specification detail for SGOPT method dependent controls

Each SGOPT method supplements the settings of Table 5.10 with controls which are specific to its partic-
ular class of method.

5.8.3 Evolutionary Algorithms

DAKOTA currently provides three types of evolutionary algorithms (EAs): a real-valued genetic algo-
rithm (sgopt _pga_r eal), an integer-valued genetic algorithm (sgopt _pga_i nt), and an evolution-
ary pattern search technique (sgopt _epsa), where "real-valued" and "integer-valued" refer to the use of
continuous or discrete variable domains, respectively (the response data are real-valued in all cases).

The basic steps of an evolutionary algorithm are as follows:

1. Select an initial population randomly and perform function evaluations on these individuals
2. Perform selection for parents based on relative fitness

3. Apply crossover and mutation to generate new_sol ut i ons_gener at ed new individuals from
the selected parents
o Apply crossover with a fixed probability from two selected parents
e Ifcrossover is applied, apply mutation to the newly generated individual with a fixed probability
o If crossover is not applied, apply mutation with a fixed probability to a single selected parent

4. Perform function evaluations on the new individuals
5. Perform replacement to determine the new population

6. Return to step 2 and continue the algorithm until convergence criteria are satisfied or iteration limits
are exceeded

Controls for seed, population size, selection, and replacement are identical for the three EA methods,
whereas the crossover and mutation controls contain slight differences and the sgopt _epsa specifica-
tion contains an additional num parti ti ons input. Table 5.11 provides the specification detail for the
controls which are common between the three EA methods.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

54 Method Commands

Description Keyword Associated Data | Status Default
EA selection sgopt _pga_- none Required group N/A
real |
sgopt _pga_-
int |
sgopt _epsa
Random seed seed integer Optional randomly
generated seed
Number of popul ation_- | integer Optional 100
population si ze
members
Selection sel ection_- rank | Optional proportional
pressure pressure proportional
Replacement type random| chc | Optional group random=20
repl acenent -| elitist
type
Random random integer Required N/A
replacement
CHC replacement | chc integer Required N/A
type
Elitist elitist integer Required N/A
replacement type
New solutions new - integer Optional popul ati on_-
generated sol utions_- si ze -
gener at ed repl acenent _-
si ze

Table 5.11: Specification detail for the SGOPT EA methods

The random seed control provides a mechanism for making a stochastic optimization repeatable. That is,
the use of the same random seed in identical studies will generate identical results. The popul ati on_-
si ze control specifies how many individuals will comprise the EA’s population. The sel ecti on_-
pr essur e controls how strongly differences in "fitness" (i.e., the objective function) are weighted in the
process of selecting "parents" for crossover:

e the r ank setting uses a linear scaling of probability of selection based on the rank order of each
individual’s objective function within the population

e the proporti onal setting uses a proportional scaling of probability of selection based on the
relative value of each individual’s objective function within the population

The r epl acement _t ype controls how current populations and newly generated individuals are com-
bined to create a new population. Each of the r epl acenent _t ype selections accepts an integer value,
which will is referred to below and in Table 5.11 as the r epl acenent _si ze:

e The random setting (the default) creates a new population using (a) r epl acenment _si ze
randomly selected individuals from the current population, and (b) popul ati on_si ze -
r epl acenent _si ze individuals randomly selected from among the newly generated individu-
als (the number of which is optionally specified using new_sol uti ons_gener at ed) that are
created for each generation (using the selection, crossover, and mutation procedures).

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.8 SGOPT Methods

55

e The CHC setting creates a new population using (a) the r epl acenment _si ze best individu-
als from the combination of the current population and the newly generated individuals, and (b)
popul ati on_si ze -repl acenent _si ze individuals randomly selected from among the re-
maining individuals in this combined pool. CHC is the preferred selection for many engineering

problems.

e Theeliti st setting creates a new population using (a) the r epl acement _si ze best individu-
als from the current population, (b) and popul ati on_si ze - r epl acenent _si ze individuals
randomly selected from the newly generated individuals. It is possible in this case to lose a good so-
lution from the newly generated individuals if it is not randomly selected for replacement; however,
the default new_sol ut i ons_gener at ed value is set such that the entire set of newly generated
individuals will be selected for replacement.

Table 5.12, Table 5.13, and Table 5.14 show the controls which differ between sgopt _pga_real ,
sgopt _pga_i nt,and sgopt _epsa, respectively.

Description Keyword Associated Data | Status Default
Crossover type crossover _- t wo_poi nt | Optional group t wo_poi nt
type bl end |
uni form
Crossover rate crossover _- real Optional 0.8
rate
Mutation type nmut ation_- repl ace_- Optional group of fset -
type uni f or m| nor mal
of fset -
nor mal |
of fset -
cauchy |
of fset -
uni f or m|
of fset -
triangul ar
Mutation scale nmut ati on_- real Optional 0.1
scal e
Mutation di mensi on_- real Optional powlatf%
dimension rate rate -
Mutation popul ation_- | real Optional 1.0
population rate rate
Non-adaptive non_adaptive | none Optional Adaptive
mutation flag mutation

Table 5.12: Specification detail for SGOPT real-valued genetic algorithm crossover and mutation

The cr ossover _t ype controls what approach is employed for combining parent genetic information
to create offspring, and the cr ossover _r at e specifies the probability of a crossover operation being
performed to generate a new offspring. SGOPT supports two generic forms of crossover, t wo_poi nt
and uni f or m which generate a new individual through coordinate-wise combinations of two parent in-
dividuals. Two-point crossover divides each parent into three regions, where offspring are created from the

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

56

Method Commands

Description Keyword Associated Data | Status Default
Crossover type crossover _- t wo_poi nt | Optional group t wo_poi nt
type uni form
Crossover rate crossover _- real Optional 0.8
rate
Mutation type nmut ati on_- repl ace_- Optional group repl ace_-
type uni f or m| uni form
of fset -
uni form
Mutation range nmut ati on_- integer Optional 1
range
Mutation di mensi on_- real Optional populatf%
dimension rate rate B
Mutation popul ation_- | real Optional 1.0
population rate rate

Table 5.13: Specification detail for SGOPT integer-valued genetic algorithm crossover and mutation

combination of the middle region from one parent and the end regions from the other parent. Since SGOPT
does not utilize bit representations of variable values, the crossover points only occur on coordinate bound-
aries, never within the bits of a particular coordinate. Uniform crossover creates offspring through random
combination of coordinates from the two parents. The sgopt _pga_r eal optimizer supports a third op-
tion, the bl end crossover method, which generates a new individual randomly along the multidimensional
vector connecting the two parents.

The mut ati on_t ype controls what approach is employed in randomly modifying design variables
within the EA population. Each of the mutation methods generates coordinate-wise changes to individ-
uals, usually by adding a random variable to a given coordinate value (an "offset" mutation), but also by
replacing a given coordinate value with a random variable (a "replace” mutation). The popul ati on_-
r at e controls the probability of mutation being performed on an individual, both for new individuals
generated by crossover (if crossover occurs) and for individuals from the existing population (if crossover
does not occur; see algorithm description in Evolutionary Algorithms). The di mensi on_r at e specifies
the probabilities that a given dimension is changed given that the individual is having mutation applied
to it. The default di mensi on_r at e uses the special formula shown in the preceding tables, where n
is the number of design variables and e is the natural logarithm constant. The mut ati on_scal e spec-
ifies a scale factor which scales mutation offsets for sgopt _pga_real and sgopt _epsa; thisis a
fraction of the total range of each dimension, so nmut at i on_scal e is a relative value between 0 and 1.
The mut at i on_r ange provides an analogous control for sgopt _pga_i nt, but is not a relative value
in that it specifies the total integer range of the mutation. The of f set _nor mal , of f set _cauchy,
of fset _uni formandof f set _tri angul ar mutation types are "offset" mutations in that they add
a 0-mean random variable with a normal, cauchy, uniform, or triangular distribution, respectively, to the ex-
isting coordinate value. These offsets are limited in magnitude by mut at i on_scal e. Ther epl ace_-
uni f or mmutation type is not limited by mut at i on_scal e; rather it generates a replacement value for
a coordinate using a uniformly distributed value over the total range for that coordinate. The real-valued
genetic algorithm supports each of these 5 mutation types, and integer-valued genetic algorithm supports
the repl ace_uni f or mand of f set _uni f or mtypes. The mutation types for evolutionary pattern
search are more specialized:

e nul ti _coord: Mutate each coordinate dimension with probability di mensi on_r at e using an
"offset" approach with initial scale nut at i on_scal e « variable range. Multiple coordinates may
or may not be mutated.

e unary_coord: Mutate a single randomly selected coordinate dimension using an "offset" ap-

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.8 SGOPT Methods 57
Description Keyword Associated Data | Status Default
Crossover type crossover _- t wo_poi nt | Optional group t wo_poi nt

type uni form
Crossover rate crossover _- real Optional 0.8
rate
Mutation type nmut ati on_- unary_coord | | Optional group unary_coord
type unary_-
si npl ex |
mul ti_coord |
mul ti_-
si npl ex
Mutation di nensi on_- real Optional IWE%
dimension rate rate -
Mutation scale nmut ati on_- real Optional 0.1
scal e
Minimum m n_scal e real Optional 0.001
mutation scale
Mutation popul ation_- | real Optional 1.0
population rate rate
Number of num - integer Optional 100
partitions partitions

Table 5.14: Specification detail for SGOPT evolutionary pattern search crossover, mutation, and number
of partitions

proach with initial scale mut ati on_scal e x variable range. One and only one coordinate is
mutated.

e nul ti _sinpl ex: Apply each of the vector offsets from a regular simplex (n+1 vectors for n
dimensions) with probability di mensi on_r at e and initial scale nut at i on_scal e * variable
range. A single vector offset may alter multiple coordinate dimensions. Multiple simplex vectors
may or may not be applied.

e unary_si npl ex: Add a single randomly selected vector offset from a regular simplex with an
initial scale of mut at i on_scal e x variable range. One and only one simplex vector is applied,
but this simplex vector may alter multiple coordinate dimensions.

and are described in more detail in [Hart and Hunter, 1999]. Both the real-valued genetic algorithm and the
evolutionary pattern search algorithm use adaptive mutation that modifies the mutation scale dynamically.
The non_adapt i ve flag can be used to deactivate the self-adaptation in real-valued genetic algorithms,
which may facilitate a more global search. The adaptive mutation in evolutionary pattern search is an
inherent component that cannot be deactivated. The mi n_scal e input specifies the minimum mutation
scale for evolutionary pattern search; sgopt _epsa terminates if the adapted mutation scale falls below
this threshold.

The num parti ti ons specification is not part of the crossover or mutation group specifications; it
specifies the number of possible values for each dimension (fractions of the variable ranges) used in the
initial evolutionary pattern search population. It is needed for theoretical reasons.

For additional information on these options, see the user and reference manuals for SGOPT [Hart, 20013;
Hart, 2001b].

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

58 Method Commands

5.84 Pattern search

Pattern search techniques are nongradient-based optimization methods which use a set of offsets
from the current iterate to locate improved points in the design space. Currently, DAKOTA pro-
vides three pattern search techniques: sgopt _pattern_search, coliny_pattern_search,
and col i ny_apps. The SGOPT pattern search technique is invoked using a sgopt _pattern_-
sear ch group specification. Components within this specification group include i niti al _delta,
threshol d_delta, pattern_basis, total _pattern_size, expand_after_success,
no_expansi on,contracti on_factor,stochastic,seed,andexpl orat ory_noves spec-
ifications. Theinitial _deltaandthreshol d_del t a specifications are required in order to pro-
vide the initial offset size and the threshold size at which to terminate the algorithm, respectively. These
values are relative percentages of the bounded region. The pat t er n_basi s specification is used to se-
lect between a coor di nat e basis or a si npl ex basis. The former uses a plus and minus offset in each
coordinate direction, for a total of 2n function evaluations in the pattern, whereas the latter uses a minimal
positive basis simplex for the parameter space, for a total of n+1 function evaluations in the pattern. The
total pattern_si ze specification can be used to augment the basic coor di nat e and si npl ex
patterns with additional function evaluations, and is particularly useful for parallel load balancing. For
example, if some function evaluations in the pattern are dropped due to duplication or bound constraint
interaction, then the t ot al _pat t er n_si ze specification instructs the algorithm to generate new off-
sets to bring the total number of evaluations up to this consistent total. The expand_aft er _success
control specifies how many successful objective function improvements must occur with a specific delta
prior to expansion of the delta, whereas the no_expansi on flag instructs the algorithm to forgo pattern
expansion altogether. The cont racti on_f act or specification selects the scaling factor used in com-
puting a reduced offset for a new pattern search cycle after the previous cycle has been unsuccessful in
finding an improved point. The SGOPT pattern search provides the capability for st ochast i ¢ shuffling
of offset evaluation order, for which the random seed can be used to make the optimizations repeatable.
Finally, the expl or at or y_noves setting controls how the offset evaluations are ordered as well as the
logic for acceptance of an improved point. The following exploratory moves selections are supported by
SGOPT:

e The nul ti _st ep case examines each trial step in the pattern in turn. If a successful step is found,
the pattern search continues examining trial steps about this new point. In this manner, the effects of
multiple successful steps are cumulative within a single iteration. This option does not support any
parallelism and will result in a serial pattern search.

e The best _al | case waits for completion of all offset evaluations in the pattern before selecting a
new iterate. This method is most appropriate for parallel execution of the pattern search.

e Thebest first case immediately selects the first improving point found as the new iterate, with-
out waiting for completion of all offset evaluations in the cycle. This option does not support any
parallelism and will result in a serial pattern search.

e The bi ased_best _fi rst case immediately selects the first improved point as the new iterate,
but also introduces a bias toward directions in which improving points have been found previously
by reordering the offset evaluations. This option does not support any parallelism and will result in
a serial pattern search.

e The adapti ve_patt ern case invokes a pattern search technique that adaptively rescales the
different search directions to maximize the number of redundant function evaluations. See
[Hart et al., 2001] for details of this method. In preliminary experiments, this method had more
robust performance than the standard best fir st case. This option does not support any paral-
lelism and will result in a serial pattern search.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.8 SGOPT Methods

59

e The t est case is used for development purposes. This currently utilizes a nonblocking scheduler
(i.e., DakotaModel::synchronize_nowait()) for performing the function evaluations.

Table 5.15 provides the specification detail for the SGOPT PS method and its method dependent controls.

Description Keyword Associated Data | Status Default
SGOPT pattern sgopt _- none Required group N/A
search method pattern_-
search
Stochastic pattern | st ochastic none Optional group N/A
search
Random seed for | seed integer Optional randomly
stochastic pattern generated seed
search
Initial offset initial - real Required N/A
value delta
Threshold for threshol d_- real Required N/A
offset values delta
Pattern basis pattern_- coordinate | Optional si mpl ex
selection basi s simplex
Total number of total _- integer Optional no augmentation
points in pattern pattern_size of basic pattern
No expansion no_expansi on | none Optional algorithm may
flag expand pattern
size
Number of expand_- integer Optional 1
consecutive after -
improvements success
before expansion
Pattern real Optional 0.5
contraction factor | contraction_-
factor
Exploratory nmul ti_step] Optional group best first
moves selection expl oratory_-| best_all | for serial,
noves best _first | best _al | for
bi ased_- parallel
best _first |
adaptive_-
pattern|
t est

Table 5.15: Specification detail for the SGOPT pattern search method

585 Solis-Wets

DAKOTA’s implementation of SGOPT also contains the Solis-Wets algorithm. The Solis-Wets method is
a simple greedy local search heuristic for continuous parameter spaces. Solis-Wets generates trial points
using a multivariate normal distribution, and unsuccessful trial points are reflected about the current point to
find a descent direction. This algorithm is inherently serial and will not utilize any parallelism. Table 5.16
provides the specification detail for this method and its method dependent controls.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

60 Method Commands

Description Keyword Associated Data | Status Default
SGOPT sgopt _- none Required group N/A
Solis-Wets solis wets
method
Random seed for | seed integer Optional randomly
stochastic pattern generated seed
search
Initial offset initial - real Required N/A
value delta
Threshold for threshol d_- real Required N/A
offset values delta
No expansion no_expansi on | none Optional algorithm may
flag expand pattern
size
Number of expand_- integer Optional 5
consecutive after -
improvements success
before expansion
Number of contract - integer Optional 3
consecutive after -
failures before failure
contraction
Pattern real Optional 0.5
contraction factor | contraction_-
factor

Table 5.16: Specification detail for the SGOPT Solis-Wets method

Theseed,initial _delta,threshol d _del ta,no_expansi on,expand_after_success,
and contracti on_factor specifications have identical meaning to the corresponding specifica-
tions for col i ny_apps and sgopt _pattern_sear ch (see Asynchronous Parallel Pattern Search
and Pattern search). The only new specification is contract _after _fai | ure, which specifies the
number of unsuccessful cycles which must occur with a specific delta prior to contraction of the delta.

5.8.6 Stratified Monte Carlo

Lastly, DAKOTA’s implementation of SGOPT contains a stratified Monte Carlo (SMC) algorithm.
One of the distinguishing characteristics of this sampling technique from other sampling methods in
Design of Computer Experiments Methods and Nondeterministic sampling method is its stopping criteria.
Using sol uti on_accur acy (see SGOPT method dependent controls), the SMC algorithm can termi-
nate adaptively when a design point with a desired performance has been located. Table 5.17 provides the
specification detail for this method and its method dependent controls.

As for other SGOPT methods, the random seed is used to make stochastic optimizations repeatable. The
bat ch_si ze input specifies the number samples to be evaluated in each multidimensional partition. And
the par ti ti ons list is used to specify the number of partitions for each design variable. For example,
partitions = 2, 4, 3 specifies 2 partitions in the first design variable, 4 partitions in the second
design variable, and 3 partitions in the third design variable. This creates a total of 24 multidimensional
partitions, and a bat ch_si ze of 2 would select 2 random samples in each partition, for a total of 48

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.9 COLINY Methods 61

Description Keyword Associated Data | Status Default
SGOPT stratified | sgopt _- none Required group N/A

Monte Carlo strat_nt

method

Random seed for | seed integer Optional randomly
stochastic pattern generated seed
search

Number of bat ch_si ze integer Optional 1

samples per

stratification

Partitions per partitions list of integers Optional No partitioning
variable

Table 5.17: Specification detail for the SGOPT sMC method

samples on each iteration of the SMC algorithm. Iterations containing 48 samples will continue until the
maximum number of iterations or function evaluations is exceeded, or the desired solution accuracy is
obtained.

59 COLINY Methods

COLINY is a collection of nongradient-based optimizers that support the Common Optimization Library
INterface (COLIN). It is the next generation of SGOPT capability and will fully replace it in time. COL-
INY optimizers currently include col i ny_apps, col i ny_cobyl a,coliny direct,coliny -
pga_real,coliny multi_start,coliny pattern_search,coliny solis wets, and
coliny _misc_sol ver. Of these, coliny_apps, coliny_cobyla, coliny direct, and
coliny_nulti_start are new methods which will be discussed below. The col i ny_pga_r eal ,
coliny_pattern_search,andcoliny_solis_wets methods are updated versions of sgopt _-
pga_real ,sgopt _pattern_search,andsgopt sol i s_wet s and have new features focused on
more general support of constraints. Their method dependent controls are (or will be) identical to those de-
scribed in Evolutionary Algorithms, Pattern search, and Solis-Wets, respectively. Finally, the col i ny_-
m sc_sol ver method is a convenient hook for new algorithm testing. Additional COLINY information
is available from ht t p: / / sof t war e. sandi a. gov/ Acr o/ Col i ny/ .

The COLINY/DAKOTA interface is still under development and is in an alpha release state for DAKOTA
v3.2.

5.9.1 COLINY method independent controls

The mapping of method independent controls for COLINY methods is currently identical to the SGOPT
methods that they will eventually replace. Refer to SGOPT method independent controls for additional
information.

5.9.2 COLINY method dependent controls

All COLINY methods support the show_m sc_opt i ons optional specification which results in a dump
of all the allowable method inputs. The m sc_opt i ons optional specification then provides a means
for inputing additional settings supported by the COLINY methods but which are not yet mapped through
the DAKOTA input specification. Finally, each of the COLINY methods supports the sol uti on_-
accur acy control. It’s meaning is identical to that described in SGOPT method dependent controls.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

http://software.sandia.gov/Acro/Coliny/.

62

Method Commands

Specification detail for method independent controls is provided in Table 5.18.

Description Keyword Associated Data | Status Default

Show show mi sc_- none Optional no dump of
miscellaneous options specification
options options

Specify m sc_options | list of strings Optional no miscellaneous
miscellaneous options specified
options

Desired solution sol ution_- real Optional - DBL_MAX
accuracy accuracy

Table 5.18: Specification detail for COLINY method dependent controls

5.9.3 Asynchronous Parallel Pattern Search

The asynchronous parallel pattern search (APPS) algorithm [Houghetal., 2000] is a fully asyn-
chronous pattern search technique, in that the search along each offset direction continues with-
out waiting for searches along other directions to finish. It utilizes the nonblocking schedulers in
DAKOTA (see Model::synchronize_nowait()). APPS is currently interfaced to DAKOTA as part
of COLINY (method col i ny_apps). APPS-specific software documentation is available from
http://sof tware. sandi a. gov/ appspack/ .

The only method independent control currently mapped to APPS is the out put verbosity control. The
APPS internal "debug" level is mapped to the DAKOTA debug, ver bose, nornal , qui et, and
si | ent settings as follows:

e DAKOTA "debug": APPS debug level =7
o DAKOTA "verbose": APPS debug level = 4
¢ DAKOTA "normal": APPS debug level = 3
e DAKOTA "quiet": APPS debug level =2

o DAKOTA ""silent": APPS debug level = 1

The APPS method is invoked using a col i ny_apps group specification. The method dependent con-
trols are a subset of the SGOPT controls for sgopt _patt er n_sear ch described in Pattern search.
In particular, APPS supportsi ni ti al _delta,threshol d _delta,andcontraction_factor.
Unlikesgopt _pattern_search,theinitial _deltaandthreshol d_del t aspecifications are
dimensional and are not relative to the bounded region. The meaning of cont r acti on_f act or, how-
ever, is identical to that of sgopt _pattern_search. SGOPT specifications such as pattern_-
basi s, total _pattern_size, and no_expansi on are not supported since APPS only supports
coordinate bases with a total of 2n function evaluations in the pattern, and these patterns may only con-
tract. Table 5.19 summarizes the APPS specification.

594 COBYLA

The Constrained Optimization BY Linear Approximations (COBYLA) algorithm is an extension to the
Nelder-Mead simplex algorithm for handling general linear/nonlinear constraints. This capability is still

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

http://software.sandia.gov/appspack/.

5.9 COLINY Methods 63
Description Keyword Associated Data | Status Default
APPS method col i ny_apps none Required group N/A
Initial offset initial - real Required N/A
value delta
Threshold for threshol d_- real Required N/A
offset values delta
Pattern real Optional 0.5
contraction factor | contraction_-
factor

under development.

Table 5.19: Specification detail for the APPS method

The only method dependent controls are currently those described in COLINY method dependent controls.

595 DIRECT

The DIRECT optimization algorithm is a derivative free global optimization method that balances local
search in promising regions of the design space with global search in unexplored regions. As shown
in Figure 5.1, DIRECT adaptively subdivides the space of feasible design points so as to guarantee that
iterates are generated in the neighborhood of a global minimum in finitely many iterations.

= (o)
Potentially o = 0
Optimal .
Boxes

1st Iteration
o = Poaints
Selected ° : °
for Analysis
* = Analyzed 5
Points o=of -
O
3rd Iteration

2nd Iteration

o

¢}

4th lteration

Figure 5.1: Design space partitioning with DIRECT

In practice, DIRECT has proven an effective heuristic for engineering design applications, for which it
is able to quickly identify candidate solutions that can be further refined with fast local optimizers. This
capability is currently operational for serial executions.

The only method dependent controls are currently those described in COLINY method dependent controls.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

64 Method Commands

5.9.6 Multi-start

Multi-start algorithms perform global search by executing multiple local searches from different, typically
randomly selected, starting points. This capability is still under development.

The only method dependent controls are currently those described in COLINY method dependent controls.

5.10 JEGA Methods

The JEGA (John Eddy Genetic Algorithms) library [Eddy and Lewis, 2001] contains two global optimiza-
tion methods. The first is a Multi-objective Genetic Algorithm (MOGA) which performs Pareto optimiza-
tion. The second is a Single-objective Genetic Algorithm (SOGA) which performs optimization on a single
objective function and allows the user to specify a mix of real and discrete variables. The JEGA library was
written by John Eddy, currently a Ph.D. student in Mechanical Engineering at SUNY Buffalo. These func-
tions are accessed as nbga and soga within DAKOTA. DAKOTA provides access to the JEGA library
through the JEGAOptimizer class.

The JEGA/DAKOTA interface is still undergoing refinements and is in a beta release state for DAKOTA
v3.2.

5.10.1 JEGA method independent controls

The method independent controls include the seed control which defines the starting seed for the random
number generator, and the max_i t erati ons and max_functi on_eval uati ons controls. The
latter two controls provide integer limits for the maximum number of generations and function evaluations,
respectively. Specification detail for method independent controls is provided in Table 5.20.

Description Keyword Associated Data | Status Default

Random Seed seed integer Optional Randomly
generated seed

Maximum max_- integer Optional 100

iterations iterations

Maximum max_- integer Optional 1000

function function_-

evaluations eval uati ons

Table 5.20: Specification detail for JEGA method independent controls

5.10.2 JEGA method dependent controls

The JEGA library currently provides two types of genetic algorithms (GAs): a multi-objective genetic
algoriithm (noga), and a single- objective genetic algorithm (soga). Both of these GAs can take real-
valued inputs, integer-valued inputs, or a mixture of real and integer-valued inputs. "Real-valued" and
"integer-valued" refer to the use of continuous or discrete variable domains, respectively (the response data
are real-valued in all cases).

The basic steps of the genetic algorithm are as follows:

1. Initialize the population (by randomly generating population members with or without duplicates
allowed, or by flat-file initialization)

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.10 JEGA Methods 65

2. Perform crossover (several crossover types are allowed)
3. Perform mutation (several mutation types are allowed)

4. Evaluate the population members. This means calculate the values of the objective function(s) for
each population member.

5. Assess the fitness of each member in the population. The fitness assessment is linked with the
next step, selection of members for the next generation. In some cases, a fitness assessment is not
necessary because the selection operator acts on the values of the objective functions. For example,
in the case of a MOGA, there is a selection operator (sel ecti on_t ype)calleddoni nati on_-
count . If this selection mechanism is specified, the user defines a domi nati on_cut of f. Ifa
particular solution is dominated by more than dom nat i on_cut of f population members, then
it is discarded. Otherwise, it is kept. Thus, this particular selection type does not need a fitness
assessor. There are fitness assessors available that go with some other selection types, however.
For example, in the case of a SOGA, one may apply an exterior penalty multiplier to the constraint
violations and sum this penalty term with the objective function. Then, for example, this fitness may
be used in a roulette wheel selection scheme.

6. Select population members to continue in the next generation. As mentioned above, selection
and fitness assessment depend on each other. The sel ecti on_type of roul ette_wheel
oruni que_roul ett e_wheel may be used either with MOGA or SOGA problems. If a roulette
wheel selection is used with a MOGA, the fitness used is a "Layered fitness." (cite) If roulette wheel
selection is used with a SOGA, the objective is calculated by applying the exterior penalty multiplier
to the sum of constraint violations. The sel ecti on_t ype of doni nat i on_count is specific
toaMOGA. Thesel ecti on_t ype off avor _f easi bl e is specific to a SOGA. This selection
operator will always take a feasible design over an infeasible one. Beyond that, if favors solutions
based on an assigned fitness value which must have been installed by some fitness assessor.

7. Assess convergence. The final step in the iterator loop is to assess the convergence of the al-
gorithm. The default convergence type can be applied to either MOGA or SOGA problems. It
does not require additional specification other than the independent controls max_f uncti on_-
eval uati ons or max_i terati ons. This convergence stops the optimization after max_-
function_eval uati ons or max_iterati ons or both. In addition, there are two conver-
gence types for SOGA problems which stop the GA after the average fitness or best fitness in the
population has remained basically unchanged for a certain number of generations.

There are many controls which can be used for both MOGA and SOGA methods. These include initializa-
tion types, crossover and mutation types, main loop controls, and some selection types. These are described
in Tables 5.21 and 5.22 below.

initialization_type defines the type of initialization for the GA. There are three types: random,
unique_random, and flat_file. r andomcreates initial solutions with random variable values according to
a uniform random number distribution. It gives no consideration to any previously generated designs. The
number of designs is specified by the popul ati on_si ze. uni que_r andomis the same as r andom
except that when a new solution is generated, it is checked against the rest of the solutions. If it duplicates
any of them, it is rejected. f | at _f i | e allows the initial population to be read from a flat file. Iff | at _-
fil e is specified, a file name must be given. Variables must be delimited with a tab in the input file. The
input file will continue to read until the end of the file. The algorithm will discard any configurations for
which it was unable to retrieve at least the number of design variables. The objective and constraint entries
are not required but if all are present, they will be recorded and the Design will be tagged as evaluated
so that evaluators may choose not to re-evaluate them. Setting the size for this initializer has the effect of
requiring a minimum number of Designs to create. If this minimum number has not been created once the
files are all read, the rest are created using the unique_random initializer.

Note that the popul at i on_si ze only sets the size of the initial population. The population size varies
in the JEGA methods according to the type of operators chosen for a particular optimization run.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

66 Method Commands

There are many crossover types available. mul ti _poi nt _bi nary crossover requires an integer num-
ber, N, of crossover points. This crossover type performs a bit switching crossover at N crossover points
in the binary encoded genome of two designs. Thus, crossover may occur at any point along a solution
chromosome (in the middle of a gene representing a design variable, for example). nmul ti _poi nt _-
par anet eri zed_bi nary crossover is similar, in that it performs a bit switching crossover routine at
N crossover points. However, the crossover points are only between design variables. Thus, this crossover
type performs crossover on a design variable or sets of design variables. mul t i _poi nt _r eal crossover
performs a variable switching crossover routing at N crossover points in the real encoded genome of two
designs. In this scheme as in nul ti _poi nt _par amet eri zed_bi nary, crossover only occurs be-
tween design variables. Note that the standard solution chromosome representation in the JEGA algorithm
is real encoded and can handle integer or real decision variables. For the first two crossover types that use a
binary representation, real variables are converted to long integers by multiplying the real number by 10”6
and then truncating. Note that this assumes a precision of only six decimal places. Discrete variables are
treated as integers.

The final crossover type is shuf fl e_random This crossover type performs crossover by choosing
design variables at random from a specified number of parents enough times that the requested number of
children are produced. For example, consider the case of 3 parents producing 2 children. This operator
would go through and for each design variable, select one of the parents as the donor for the child. So it
creates a random shuffle of the parent design variable values. The relative numbers of children and parents
are controllable to allow for as much mixing as desired. The more parents involved, the less likely that the
children will wind up exact duplicates of the parents.

All crossover types take a cr ossover _rat e. The crossover rate is used to calculate the number of
crossover operations that take place. The number of crossovers is equal to the rate * population_size.

There are five mutation types allowed. r epl ace_uni f or mintroduces random variation by first ran-
domly choosing a design variable of a randomly selected design and reassigning it to a random valid value
for that variable. No consideration of the current value is given when determining the new value. All
mutation types have a popul at i on_r at e. The number of mutations for the replace_uniform mutator is
the product of the population_rate and the population_size.

The bit_random mutator introduces random variation by first converting a randomly chosen variable of a
randomly chosen Design into a binary string. It then flips a randomly chosen bit in the string fromaltoa0
or visa versa. This mutator is similar to the replace_uniform, only it is mutating on a binary representation
and not a real representation. Also, the resulting value from a bit_random mutator has a high probability
that it will be similar to the original value, but the resulting value from a replace_uniform mutator is more
likely to be significantly different than the original value. The number of mutations performed is the
product of the population_rate, the number of design variables, and the population size.

The offset mutators all act by adding an "offset" random amount to the variable. The random amount
has a mean of zero in all cases. The of f set _nor mal mutator introduces random variation by adding a
Gaussian random amount to a variable value. The random amount has a mean of 0 and a standard deviation
dependent on the offset range. For the of f set _nor mal mutator, the offset range is interpreted as a
fraction of the total range of the variable. The standard deviation is computed as the product of the offset
range and the total range of the variable. nut at i on_scal e is a fraction in the range [0, 1] and is meant
to help control the amount of variation that takes place when a variable is mutated. nut at i on_scal e is
multiplied by the range of the variable being mutated to serve as standard deviation. of f set _cauchy is
similar to of f set _nor mal , except that a Cauchy random variable is added to the variable being mutated.
The mutation_scale also defines the standard deviation for this mutator. Finally, of f set _uni f or madds
a uniform random amount to the variable value. For the of f set _uni f or mmutator, the offset range is
interpreted as a fraction of the total range of the variable. The magnitude of the deviation is +/- 1/2 * (offset
range x variable range). The offset range is defined by nut at i on_scal e. The number of mutations for
all offset mutators is defined as the product of popul ati on_r at e and popul ati on_si ze.

The selection types that are common to both MOGA and SOGA arer oul et t e_wheel anduni que_-
roul ette_wheel . Inroulette_wheel selection, each Design is allotted a portion of a wheel proportional

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.10 JEGA Methods 67

to its fitness relative to the fitnesses of the other Designs. Then portions of the wheel are chosen at ran-
dom and the Design occupying those portions are duplicated into the next population. Those Designs
allotted larger portions of the wheel are more likely to be selected (potentially many times). uni que_-
roul ette_wheel selection is the same as r oul ett e_wheel selection, with the exception that a
Design may only be selected once.

Description Keyword Associated Data | Status Default
GA Method nogal soga none Required group N/A
Initialization type flat_file| Required unique_random

initializationrandom

type uni que_-

random
Multi point mul ti_- integer Required N/A
binary poi nt _bi nary
replacement
Multi point mul ti_- integer Required N/A
parameterized poi nt _-
binary paraneterized| -
replacement bi nary
Multi point real mul ti_- integer Required N/A
replacement poi nt _real
Random shuffle shuffle_- num parents, | Required N/A
replacement random num -
of fspring

Number of num parents integer optional 2
parents in random
shuffle
replacement
Number of num - integer optional 2
offspring in of fspring
random shuffle
replacement

Table 5.21: Specification detail for JEGA method dependent controls: initialization and replacement

5.10.3 Multi-objective Evolutionary Algorithms

The specification for controls specific to Multi-objective Evolutionary algorithms are described here. These
controls will be appropriate to use if the user has specified noga as the method.

The initialization, crossover, and mutation controls were all described in the preceding section. There are
no MOGA specific aspects to these controls. Thesel ecti on_t ype foraMOGA mayberoul ette_-
wheel , uni que_roul ette_wheel , or dom nati on_count. The domni nati on_count selec-
tion is the default and is recommended. It works especially well on multi-objective problems because it has
been specifically designed to avoid problems with aggregating and scaling objective function values and
transforming them into a single objective. Instead, dom nati on_count works by ordering population
members by number of dominated designs. If a design is dominated by more than a number of designs
(dom nat i on_cut of f), then it is discarded. Otherwise it is kept and selected to go to the next gen-
eration. The one catch is that this selector will require that a minimum number of selections take place.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

68

Method Commands

Description

Keyword

Associated Data

Status

Default

Crossover type

crossover _-
type

mul ti_-
poi nt _-
bi nary]|
mul ti_-
poi nt _-

paraneteri zed|

bi nary|

mul ti_-

poi nt _real |
shuffle_ -
random

Optional group

none

Crossover rate

crossover -
rate

real

optional (applies
to all crossover
types)

0.8

Mutation type

nmut ati on_-
type

repl ace_-
uni f or m|

bi t _random|
of fset -
cauchy |

of fset -
uni f or m|

of fset -
nor nal

Optional group

Mutation scale

nmut ati on_-
scal e

real

Optional

0.15

Mutation
population rate

popul ation_-
rate

real

Optional

0.08

Selection type

sel ection_-

roulette -

Optional group

wheel |

uni que_-
roulette -
wheel

type

Table 5.22: Specification detail for JEGA method dependent controls: crossover, mutation, and selection

shri nkage_per cent age defines the minimum amount of selections that will take place if enough de-
signs are available. It is interpreted as a percentage of the population size that must go on to the subsequent
generation. To enforce this, doni nat i on_count makes all the selections it would make anyway and if
that is not enough, it re-ranks what is left and makes selections from those. It continues until it has made
enough selections. The shrinkage_percentage is designed to prevent extreme decreases in the population
size at any given generation, and thus prevent a big loss of genetic diversity in a very short time. Without a
shrinkage limit, a small group of "'super" designs may appear and quickly cull the population down to a size
on the order of domination_count. In this case, all the diversity of the population is lost and it is expensive
to re-diversify and spread the population. Another instance when it is beneficial to keep a population of
reasonable size is when the algorithm has settled into one area of the response space and then happens on
a new, better area through exploration. The shrinkage_percentage prevents a fast move to the new area.

The MOGA specific controls are described in Table 5.23 below.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.11 Least Squares Methods 69

Description Keyword Associated Data | Status Default
Selection type sel ection_- dom nation_- | Optional group dom nation_-
type count | count
roulette -
wheel |
uni que_-
roulette -
wheel
Domination dom nation_- | Integer Optional 6
cutoff cut of f
Shrinkage shri nkage_- real Optional 0.9
percentage per cent age

Table 5.23: Specification detail for MOGA method controls

5.10.4 Single-objective Evolutionary Algorithms

The specification for controls specific to Single-objective Evolutionary algorithms are described here.
These controls will be appropriate to use if the user has specified soga as the method.

The initialization, crossover, and mutation controls were all described above. There are no SOGA specific
aspects to these controls. The sel ecti on_t ype fora SOGA may ber oul ett e_wheel ,uni que_-
roul ette_wheel, or favor feasi bl e. The favor _feasi bl e selection type always takes a
feasible design over an infeasible one. Beyond that, it selects designs based on a fitness value. For SOGA
problems, the user is allowed to specify an ext eri or _penal ty_nmnul tiplier withroulette_-
wheel oruni que_roul ette_wheel selection. The penalty multiplier is a parameter that multiplies
the constraint violation penalty prior to summation with a weighted sum of objectives to obtain a fitness
value.

The SOGA controls allow two additional convergence types. The conver gence_t ype called
average_fitness_tracker keepstrack of the average fitness in a population. If this average fitness
does not change more than per cent _change over some number of generations, num gener at i ons,
then the solution is reported as converged and the algorithm terminates. The best _fitness_tracker
works in a similar manner, only it tracks the best fitness in the population. Convergence occurs after num -
gener at i ons has passed and there has been less than per cent _change in the best fitness value.

The SOGA specific controls are described in Table 5.24 below.

5.11 Least Squares Methods

DAKOTA's least squares branch currently contains three methods for solving nonlinear least squares
problems: NL2SOL, a trust-region method that adaptively chooses between two Hessian approxima-
tions (Gauss-Newton and Gauss-Newton plus a quasi-Newton approximation to the rest of the Hessian),
NLSSOL, a sequential quadratic programming (SQP) approach that is from the same algorithm family as
NPSOL, and Gauss-Newton, which supplies the Gauss-Newton Hessian approximation to the full-Newton
optimizers from OPT++,

The important difference of these algorithms from general-purpose optimization methods is that the re-
sponse set is defined by least squares terms, rather than an objective function. Thus, a finer granu-
larity of data is used by least squares solvers as compared to that used by optimizers. This allows
the exploitation of the special structure provided by a sum of squares objective function. Refer to
Least squares terms and constraint functions (least squares data set) for additional information on the least

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

70 Method Commands

Description Keyword Associated Data | Status Default
Selection type sel ection_- favor - Optional group
type f easi bl e|
uni que_-
roulette -
wheel |
roulette -
wheel
Exterior penalty exterior_- Real Optional
multiplier penalty -
mul tiplier
Convergence type best - Optional
convergence_-| fitness_-
type tracker|
aver age_-
fitness -
tracker
Number of num - Integer Optional 15
generations (for generations
convergence test)
Percent change in | percent _- Real Optional 0.1
fitness change

Table 5.24: Specification detail for SOGA method controls

squares response data set.

5111 NL2SOL Method

NL2SOL is available as nl 2sol and addresses unconstrained and bound-constrained problems. It uses
a trust-region method (and thus can be viewed as a generalization of the Levenberg-Marquardt algorithm)
and adaptively chooses between two Hessian approximations, the Gauss-Newton approximation alone and
the Gauss-Newton approximation plus a quasi-Newton approximation to the rest of the Hessian. Even
on small-residual problems, the latter Hessian approximation can be useful when the starting guess is far
from the solution. On problems that are not over-parameterized (i.e., that do not involve more optimization
variables than the data support), NL2SOL usually exhibits fast convergence.

Several NL2SOL convergence tolerances are adjusted in response to f uncti on_pr eci si on (default
1e-10), which gives the relative precision to which responses are computed. These tolerances may also be
specified explicitly: r f ct ol is the relative-function convergence tolerance (on the accuracy desired in the
sum-of-squares function); xct ol is the X-convergence tolerance (scaled relative accuracy of the solution
variables); af ct ol is the absolute function convergence tolerance (stop when half the sum of squares
is less than af ct ol , which is mainly of interest on zero-residual test problems); sct ol is the singular
convergence tolerance, which works in conjunction with | maxs to test for underdetermined least-squares
problems (stop when the relative reduction yet possible in the sum of squares appears less then sct ol for
steps of scaled length at most | maxs); xf t ol is the false-convergence tolerance (stop with a suspicion
of discontinuity when a more favorable stopping test is not satisfied and a step of scaled length at most
xft ol isnotaccepted). Both | maxs and | maxO (the initial trust radius) are 1 by default.

Printing by NL2SOL is controlled by two values, out | ev and auxprt. NL2SOL prints a summary
line every out | ev iterations (default 1) and prints the auxiliary information indicated by bits of auxpr t
(default 31 = everything):

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.11 Least Squares Methods 71

o 1==> print the initial guess

==> print the solution, gradient, and scale vector

e 4 ==> print solution statistics

8 ==> print nondefault values (including those adjusted in response to values of f uncti on_-
pr eci si on that are bigger than "machine epsilon" and less than 1)

e 16 ==> show changes to the active set in problems with bound constraints

Whether and how NL2SOL computes and prints a final covariance matrix and regression diagnostics is
affected by several keywords. covr eq specifies the desired covariance approximation:

e 0 = default = none
e lor-1==>¢2H ' JTJH 1
e 20r-2==>¢2H"!

e 30r-3==> g2(JTJ)"1

Negative values ==> estimate the final Hessian H by finite differences of function values only (using
dl tfdc)

o Positive values ==> differences of gradients (using del t a0)

When r dr eq is 1 (rather than its default 0) and a positive-definite final Hessian approximation H is com-
puted, NL2SOL computes and prints a regression diagnostic vector RD such that if omitting the i-th obser-
vation would cause alpha times the change in the solution that omitting the j-th observation would cause,
then RD[i] = |alpha] RD[j]. The finite-difference step-size tolerances affecting H are del t a0 for gradient
differences and dl t f dc for function differences.

Tables 5.25 and 5.26 provide the specification detail for the NL2SOL method. For additional information
on the NL2SOL tolerances (and on other parameters that could be added to the DAKOTA driver should
need arise), see htt p: //cm bel | -1 abs. conf cnmf cs/ cstr/ 153. ps. gz.

5.11.2 NLSSOL Method

NLSSOL is available as nl ssol _sqgp and supports unconstrained, bound-constrained, and generally-
constrained problems. It exploits the structure of a least squares objective function through the periodic
use of Gauss-Newton Hessian approximations to accelerate the SQP algorithm. DAKOTA provides access
to the NLSSOL library through the NLSSOL LeastSq class. The method independent and method depen-
dent controls are identical to those of NPSOL as described in NPSOL method independent controls and
NPSOL method dependent controls.

5.11.3 Gauss-Newton Method

The Gauss-Newton algorithm is available as opt pp_g_newt on and supports unconstrained, bound-
constrained, and generally-constrained problems. The code for the Gauss-Newton approximation (ob-
jective function value, gradient, and approximate Hessian defined from residual function values and gra-
dients) is provided outside of OPT++ within SNLLLeastSq::nlf2_evaluator_gn(). When interfaced with

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

http://cm.bell-labs.com/cm/cs/cstr/153.ps.gz.

72 Method Commands

Description Keyword Associated Data | Status Default

Relative precision | functi on_- Real Optional 1le-10

in least squares preci sion

terms

Relative function | rfct ol Real Optional NL2SOL internal
convergence default

tolerance

Absolute function | af ct ol Real Optional NL2SOL internal
convergence default

tolerance

Convergence xct ol Real Optional NL2SOL internal
tolerance for default

change in

parameter vector

Singular sct ol Real Optional NL2SOL internal
convergence default

tolerance

Step limit for | maxs Real Optional 1.

sct ol

False xft ol Real Optional NL2SOL internal
convergence default

tolerance

Table 5.25: Specification detail for NL2SOL method dependent controls: function precision and conver-
gence tolerances

the unconstrained, bound-constrained, and nonlinear interior point full-Newton optimizers from the OPT++
library, it provides a Gauss-Newton least squares capability which — on zero-residual test problems — can
exhibit quadratic convergence rates near the solution. (Real problems almost never have zero residuals,
i.e., perfect fits.)

Mappings for the method independent and dependent controls are the same as for the
OPT++ optimization methods and are as described in OPT++ method independent controls and
OPT++ method dependent controls. In particular, since OPT++ full-Newton optimizers provide the foun-
dation for Gauss-Newton, the specifications from Table 5.8 are also applicable for opt pp_g_newt on.

5.12 Nondeterministic Methods

DAKOTA’s nondeterministic branch does not currently make use of any method independent controls.
As such, the nondeterministic branch documentation which follows is limited to the method dependent
controls for the sampling, reliability, and polynomial chaos expansion methods.

Each of these techniques supports response_l|evels, probability_levels, and
reliability_levels specifications along with optional num response_| evel s, num -
probability_ | evel s,andnumreliability_|evel s keys. The keys define the distribution of
the levels among the different response functions. For example, the following specification

numresponse_levels =2 4 3\
response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30. \

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1,
.2, .3, .4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.12 Nondeterministic Methods 73

Description Keyword Associated Data | Status Default

Initial trust region | | max0 Real Optional 1.

radius

Summary output | outl ev Integer Optional 1 (every iteration)
frequency

Summary output auxprt Integer Optional 31 (all data)

level

Covariance covreq Integer Optional 0 (no covariance)
post-processing

Regression rdreq Integer Optional 0 (no regression
diagnostic diagnostics)
post-processing

Finite-difference | del t a0 Real Optional NL2SOL internal
step size for H default

(covariance
post-processing)
using gradient

differences
Finite-difference | dl tfdc Real Optional NL2SOL internal
step size for H default

(covariance
post-processing)
using function
differences

Table 5.26: Specification detail for NL2SOL method dependent controls: trust region and output controls.

If the num r esponse_| evel s key were omitted from this example, then the response levels would be
evenly distributed among the response functions (three levels each in this case).

The response_|I evel s specification provides the target response values for generating probabilities
and/or reliabilities (forward mapping). The selection of probability or reliability results for the for-
ward mapping can be performed with the conput e keyword followed by either probabi I i ti es or
reliabilities. Conversely, theprobability |levelsandreliability | evel s specifica-
tions provide target levels for which response values will be computed (inverse mapping). The mapping
results (probabilities or reliabilities for the forward mapping and response values for the inverse mapping)
define the final statistics of the nondeterministic analysis that can be accessed via the primary and secondary
mapping matrices for nested models (see Method Independent Controls). Sets of response-probability pairs
computed with the forward/inverse mappings define either a cumulative distribution function (CDF) or a
complementary cumulative distribution function (CCDF) for each response function. The selection of a
CDF or CCDF can be performed with the di stri buti on keyword followed by either cunul ati ve
for the CDF option or conpl enent ar y for the CCDF option. Table 5.27 provides the specification detail
for the forward/inverse mappings used by each of the nondeterministic analysis methods.

5.12.1 Nondeter ministic sampling method

The nondeterministic sampling iterator is selected using the nond_sanpl i ng specification. This iterator
performs sampling within specified uncertain variable probability distributions in order to determine distri-
bution statistics for response functions. DAKOTA currently provides access to nondeterministic sampling
methods through the combination of the NonDSampling base class and the NonDLHSSampling derived
class.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

74 Method Commands
Description Keyword Associated Data | Status Default
Distribution type | di stribution | cunul ative | Optional group cunul ative

conpl ementary (CDF)
Response levels response_- list of reals Optional group No CDF/CCDF
| evel s probabili-
ties/reliabilities to
compute
Number of num - list of integers Optional response_-
response levels response_- | evel s evenly
| evel s distributed
among response
functions
Target statistics conput e Optional
for response probabilities probabilities
levels |
reliabilities
Probability levels list of reals Optional group No CDF/CCDF
probability_- response levels to
|l evel s compute
Number of num - list of integers Optional
probability levels | probability_- probability -
| evel s | evel s evenly
distributed
among response
functions
Reliability levels list of reals Optional group No CDF/CCDF
reliability - response levels to
| evel s compute
Number of num - list of integers Optional
reliability levels reliability - reliability -
| evel s | evel s evenly
distributed
among response
functions

Table 5.27: Specification detail for forward/inverse level mappings

CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples
array (the response levels computed are not interpolated and will correspond to one of the sampled values).
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample
standard deviations separating the sample mean from the response level. Response levels are calculated for
specified CDF/CCDF reliabilities by projecting out the prescribed number of sample standard deviations
from the sample mean.

The seed integer specification specifies the seed for the random number generator which is used to make
sampling studies repeatable. The f i xed_seed flag is relevant if multiple sampling sets will be generated
during the course of a strategy (e.g., surrogate-based optimization, optimization under uncertainty). Spec-
ifying this flag results in the reuse of the same seed value for each of these multiple sampling sets, which
can be important for reducing variability in the sampling results. However, this behavior is not the default
as the repetition of the same sampling pattern can result in a modeling weakness that an optimizer could
potentially exploit (resulting in actual reliabilities that are lower than the estimated reliabilities). In either
case (f i xed_seed or not), the study is repeatable if the user specifies a seed and the study is random is

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.12 Nondeterministic Methods 75

the user omits a seed specification.

The number of samples to be evaluated is selected with the sanpl es integer specification. The algorithm
used to generate the samples can be specified using sanpl e_t ype followed by either r andom for pure
random Monte Carlo sampling, or | hs, for Latin Hypercube sampling.

The nondeterministic sampling iterator also supports a design of experiments mode through the al | _-
vari abl es flag. Normally, nond_sanpl i ng generates samples only for the uncertain variables,
and treats any design or state variables as constants. The al | _vari abl es flag alters this behav-
ior by instructing the sampling algorithm to treat any continuous design or continuous state variables
as parameters with uniform probability distributions between their upper and lower bounds. Sam-
ples are then generated over all of the continuous variables (design, uncertain, and state) in the vari-
ables specification. This is similar to the behavior of the design of experiments methods described in
Design of Computer Experiments Methods, since they will also generate samples over all continuous de-
sign, uncertain, and state variables in the variables specification. However, the design of experiments meth-
ods will treat all variables as being uniformly distributed between their upper and lower bounds, whereas
the nond_sanpl i ng iterator will sample the uncertain variables within their specified probability dis-
tributions. Table 5.28 provides details of the nondeterministic sampling specifications beyond those of
Table 5.27.

Description Keyword Associated Data | Status Default

Nondeterministic | nond_- none Required group N/A

sampling iterator | sanpl i ng

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable

Number of sanpl es integer Optional minimum

samples required

Sampling type sanpl e_type random|| hs Optional group I hs

All variablesflag | al | _- none Optional sampling only

vari abl es over uncertain

variables

Table 5.28: Specification detail for nondeterministic sampling method

5.12.2 Reliability methods

Reliability methods are selected using the nond_r el i abi | i ty specification and are implemented
within the NonDReliability class. These methods compute approximate response function distribution
statistics based on specified uncertain variable probability distributions. Each of the reliability methods
can compute the probabilities/reliabilities corresponding to specified response levels and the response levels
corresponding to specified probability/reliability levels. Moreover, specifications of r esponse_| evel s,
probability levels,andreliability | evel s maybe combined within the calculations for
each response function.

The Mean Value method (MV, also known as MVFOSM in [Haldar and Mahadevan, 2000]) is the sim-
plest, least-expensive method in that it estimates the response means, response standard deviations, and
all CDF/CCDF response-probability-reliability mappings from a single evaluation of response functions
and gradients at the uncertain variable means. This approximation can have acceptable accuracy when the
response functions are nearly linear and their distributions are approximately Gaussian, but can have very

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

76 Method Commands

poor accuracy in other situations.

All other reliability methods perform an internal nonlinear optimization to compute a most probable point
(MPP). The distance of the MPP from the origin in the transformed standard normal space ("u-space")
defines the reliability index. The reliability can then be converted to a probability using either first- or
second-order integration. The forward reliability analysis algorithm of computing probabilities for spec-
ified response levels is called the Reliability Index Approach (RIA), and the inverse reliability analysis
algorithm of computing response levels for specified probability levels is called the Performance Measure
Approach (PMA). The different RIA/PMA algorithm options are specified using the mpp_sear ch spec-
ification which selects among different linearization approaches that can be used to reduce computational
expense during the MPP searches. The x_I i near i ze_mean MPP search option performs a single lin-
earization in the space of the original uncertain variables ("x-space") centered at the uncertain variable
means, searches for the MPP for each response/probability level using this linearization, and performs a
validation response evaluation at each predicted MPP. This option is commonly known as the Advanced
Mean Value (AMV) method. The u_l i neari ze_mean option is identical to the x_| i neari ze_-
mean option, except that the linearization is performed in u-space. The x_I i neari ze_npp approach
starts with an x-space linearization at the uncertain variable means, but iteratively relinearizes at each MPP
prediction until the MPP converges. This option is commonly known as the AMV+ method. The u_-
| i neari ze_npp option is identical to the x_| i neari ze_npp option, except that all linearizations
are performed in u-space. And, finally, the no_| i near i ze option performs the MPP search on the orig-
inal response functions without the use of any linearizations. The optimization algorithm used to perform
these MPP searches can be selected to be either sequential quadratic programming (uses the npsol _sqp
optimizer) or nonlinear interior point (uses the opt pp_q_new on optimizer) algorithms using the sqp
or ni p keywords.

In addition to the MPP search specifications, one may select among different integration approaches for
computing probabilities at the MPP by using the i nt egr at i on keyword followed by either fi rst _-
order or second_or der. Combining the no_| i neari ze option of the MPP search with first- and
second-order integrations results in the traditional first- and second-order reliability methods (FORM and
SORM). Additional details on these methods are available in [Eldred et al., 2004c].

Table 5.29 provides details of the reliability method specifications beyond those of Table 5.27.

5.12.3 Polynomial chaos expansion method

The polynomial chaos expansion (PCE) method is a general framework for the approximate representation
of random response functions in terms of finite-dimensional series expansions in standard unit Gaussian
random variables. An important distinguishing feature of the methodology is that the solution series expan-
sions are expressed as random processes, not merely as statistics as in the case of many nondeterministic
methodologies. DAKOTA currently provides access to PCE methods through the combination of the Non-
DSampling base class and the NonDPCESampling derived class.

The method requires either the expansi on_t er ns or the expansi on_or der specification in order
to specify the number of terms in the expansion or the highest order of Gaussian variable appearing in the
expansion. The number of terms, P, in a complete polynomial chaos expansion of arbitrary order, p, for a
response function involving n uncertain input variables is given by

P 1571
s=1""r=0

One must be careful when using the expansi on_t er ns specification, as the satisfaction of the
above equation for some order p is not rigidly enforced. As a result, in some cases, only a sub-
set of terms of a certain order will be included in the series while others of the same order will be

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.12 Nondeterministic Methods

77

Description Keyword Associated Data | Status Default
Reliability nond_- none Required group N/A
method reliability
MPP search type | npp_search X_- Optional group No MPP search

linearize - (MV method)

nmean |

u -

linearize -

nmean |

X__

linearize -

npp |

u -

linearize -

npp |

no_linearize
MPP search sqgp, ni p none Optional NPSOL’s SQP
algorithm algorithm
Integration i ntegration first_order | | Optional group First-order
method second_or der integration

Table 5.29: Specification detail for reliability methods

omitted. This omission of terms can increase the efficacy of the methodology for some problems but
have extremely deleterious effects for others. The method outputs either the first expansi on_t er ns
coefficients of the series or the coefficients of all terms up to order expansi on_or der in the se-
ries depending on the specification. Additional specifications include the level mappings described in
Nondeterministic Methods and the seed, f i xed_seed, sanpl es, and sanpl e_t ype specifications
described in Nondeterministic sampling method. Table 5.30 provides details of the polynomial chaos ex-
pansion specifications beyond those of Table 5.27.

Description Keyword Associated Data | Status Default
Polynomial chaos | nond_- none Required group N/A
expansion iterator | pol ynomi al _-
chaos
Expansion terms expansi on_- integer Required N/A
terns
Expansion order expansi on_- integer Required N/A
order
Random seed seed integer Optional randomly
generated seed
Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable
Number of sanpl es integer Optional minimum
samples required
Sampling type sanpl e_type random| | hs Optional group | hs

Table 5.30: Specification detail for polynomial chaos expansion method

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

78 Method Commands

5.13 Design of Computer Experiments Methods

The Distributed Design and Analysis of Computer Experiments (DDACE) library provides design of ex-
periments methods for computing response data sets at a selection of points in the parameter space. Cur-
rent techniques include grid sampling (gr i d), pure random sampling (r andon), orthogonal array sam-
pling (oas), latin hypercube sampling (I hs), orthogonal array latin hypercube sampling (oa_|I hs), Box-
Behnken (box_behnken), and central composite design (cent ral _conposi t e). It is worth noting
that there is some overlap in sampling techniques with those available from the nondeterministic branch.
The current distinction is that the nondeterministic branch methods are designed to sample within a vari-
ety of probability distributions for uncertain variables, whereas the design of experiments methods treat
all variables as having uniform distributions. As such, the design of experiments methods are well-suited
for performing parametric studies and for generating data sets used in building global approximations (see
Global approximation interface), but are not currently suited for assessing the effect of uncertainties. If a
design of experiments over both design/state variables (treated as uniform) and uncertain variables (with
probability distributions) is desired, then nond_sanpl i ng can support this with its al | _vari abl es
option (see Nondeterministic sampling method). DAKOTA provides access to the DDACE library through
the DACEIlterator class.

The design of experiments methods do not currently make use of any of the method independent controls.
In terms of method dependent controls, the specification structure is straightforward. First, there is a set of
design of experiments algorithm selections separated by logical OR’s (gri d or r andomor oas or | hs
oroa_| hs orbox_behnkenorcentral conposite). Second, there are optional specifications for
the random seed to use in generating the sample set (seed), for fixing the seed (f i xed_seed) among
multiple sample sets (see Nondeterministic sampling method for discussion), for the number of samples
to perform (sanpl es), and for the number of symbols to use (synbol s). The seed control is used
to make sample sets repeatable, and the symnbol s control is related to the number of replications in the
sample set (a larger number of symbols equates to more stratification and fewer replications). Design of
experiments specification detail is given in Table 5.31.

Description Keyword Associated Data | Status Default
Design of dace none Required group N/A
experiments
iterator
dace algorithm grid|random | none Required N/A
selection |oas || hs |
oa_| hs |
box_behnken |
central -
composite
Random seed seed integer Optional randomly
generated seed
Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable
Number of sanpl es integer Optional minimum
samples required
Number of synbol s integer Optional default for
symbols sampling
algorithm

Table 5.31: Specification detail for design of experiments methods

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.14 Parameter Study Methods 79

5.14 Parameter Study Methods

DAKOTA’s parameter study methods compute response data sets at a selection of points in the parameter
space. These points may be specified as a vector, a list, a set of centered vectors, or a multi-dimensional
grid. Capability overviews and examples of the different types of parameter studies are provided in the
Users Manual. DAKOTA implements all of the parameter study methods within the ParamStudy class.

With the exception of output verbosity (a setting of si | ent will suppress some parameter study diag-
nostic output), DAKOTA’s parameter study methods do not make use of the method independent controls.
Therefore, the parameter study documentation which follows is limited to the method dependent controls
for the vector, list, centered, and multidimensional parameter study methods.

5.14.1 Vector parameter study

DAKOTA’s vector parameter study computes response data sets at selected intervals along a vector in
parameter space. It is often used for single-coordinate parameter studies (to study the effect of a single
variable on a response set), but it can be used more generally for multiple coordinate vector studies (to
investigate the response variations along some n-dimensional vector). This study is selected using the
vect or _par anet er _st udy specification followed by either afi nal _poi nt orastep_vector
specification.

The vector for the study can be defined in several ways (refer to dakota.input.spec). First, a fi nal _-
poi nt specification, when combined with the initial values from the variables specification (see cdv_ -
initial _point,ddv_initial_point,csv_initial _state,anddsv_initial_statein
Variables Commands), uniquely defines an n-dimensional vector’s direction and magnitude through its start
and end points. The intervals along this vector may either be specified witha st ep_| engt horanum -
st eps specification. In the former case, steps of equal length (Cartesian distance) are taken from the
initial values up to (but not past) the f i nal _poi nt . The study will terminate at the last full step which
does not go beyond the fi nal _poi nt. In the latter num st eps case, the distance between the initial
values and the f i nal _poi nt is broken into num st eps intervals of equal length. This study performs
function evaluations at both ends, making the total number of evaluations equal to num st eps+1. The
fi nal _poi nt specification detail is given in Table 5.32.

Description Keyword Associated Data | Status Default
\ector parameter | vector - none Required group N/A
study par anet er _-

st udy
Termination point | fi nal _poi nt list of reals Required group N/A
of vector
Step length along | step_l ength real Required N/A
vector
Number of steps num st eps integer Required N/A
along vector

Table 5.32: final_point specification detail for the vector parameter study

The other technique for defining a vector in the study is the st ep_vect or specification. This parameter
study begins at the initial values and adds the increments specified in st ep_vect or to obtain new sim-
ulation points. This process is performed num st eps times, and since the initial values are included, the
total number of simulations is again equal to num st eps+1. The st ep_vect or specification detail is
given in Table 5.33.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

80 Method Commands

Description Keyword Associated Data | Status Default
\ector parameter | vector - none Required group N/A
study par anet er _-

st udy
Step vector step_vector list of reals Required group N/A
Number of steps num st eps integer Required N/A
along vector

Table 5.33: step_vector specification detail for the vector parameter study

5.14.2 List parameter study

DAKOTA’s list parameter study allows for evaluations at user selected points of interest which need not
follow any particular structure. This study is selected using the | i st _par anmet er _st udy method
specification followed by al i st _of _poi nt s specification.

The number of real valuesinthe | i st _of _poi nt s specification must be a multiple of the total number
of continuous variables contained in the variables specification. This parameter study simply performs
simulations for the first parameter set (the first n entries in the list), followed by the next parameter set
(the next n entries), and so on, until the list of points has been exhausted. Since the initial values from the
variables specification will not be used, they need not be specified. The list parameter study specification
detail is given in Table 5.34.

Description Keyword Associated Data | Status Default
List parameter list_- none Required group N/A
study par anet er _-

st udy
List of points to list_of - list of reals Required N/A
evaluate poi nts

Table 5.34: Specification detail for the list parameter study

5.14.3 Centered parameter study

DAKOTA’s centered parameter study computes response data sets along multiple coordinate-based vec-
tors, one per parameter, centered about the initial values from the variables specification. This is use-
ful for investigation of function contours with respect to each parameter individually in the vicinity of
a specific point (e.g., post-optimality analysis for verification of a minimum). It is selected using the
cent er ed_par amet er _st udy method specification followed by per cent _del t aanddel tas_-
per _vari abl e specifications, where per cent _del t a specifies the size of the increments in percent
and del t as_per _vari abl e specifies the number of increments per variable in each of the plus and
minus directions. The centered parameter study specification detail is given in Table 5.35.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.14 Parameter Study Methods

81

Description Keyword Associated Data | Status Default
Centered centered - none Required group N/A
parameter study par anet er _-

st udy
Interval size in percent - real Required N/A
percent delta
Number of +/- del tas_per_- | integer Required N/A
deltas per vari abl e
variable

5.14.4 Multidimensional parameter study

Table 5.35: Specification detail for the centered parameter study

DAKOTA'’s multidimensional parameter study computes response data sets for an n-dimensional grid of
points. Each continuous variable is partitioned into equally spaced intervals between its upper and lower
bounds, and each combination of the values defined by the boundaries of these partitions is evaluated.
This study is selected using the rmul ti di m_par amet er _st udy method specification followed by a
partiti ons specification, where the parti ti ons list specifies the number of partitions for each con-
tinuous variable. Therefore, the number of entries in the partitions list must be equal to the total number
of continuous variables contained in the variables specification. Since the initial values from the variables
specification will not be used, they need not be specified. The multidimensional parameter study specifica-
tion detail is given in Table 5.36.

variable

Description Keyword Associated Data | Status Default
Multidimensional | nul tidi m - none Required group N/A
parameter study par anet er _-

st udy
Partitions per partitions list of integers Required N/A

Table 5.36: Specification detail for the multidimensional parameter study

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

82

Method Commands

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 6

Variables Commands

6.1 Variables Description

The variables section in a DAKOTA input file specifies the parameter set to be iterated by a particular
method. This parameter set is made up of design, uncertain, and state variables. Design variables can be
continuous or discrete and consist of those variables which an optimizer adjusts in order to locate an opti-
mal design. Each of the design parameters can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are continuous variables which are characterized by probability distri-
butions. The distribution type can be normal, lognormal, uniform, loguniform, weibull, or histogram. Each
uncertain variable specification contains descriptive tags and, either explicitly or implicitly, distribution
lower and upper bounds. Distribution lower and upper bounds are explicit portions of the normal, lognor-
mal, uniform, loguniform, and weibull specifications, whereas they are implicitly defined for histogram
variables from the extreme values within the bin/point pairs specifications. In addition to tags and bounds
specifications, normal variables include mean and standard deviation specifications, lognormal variables
include mean and either standard deviation or error factor specifications, weibull variables include alpha
and beta specifications, and histogram variables include bin pairs and point pairs specifications. State vari-
ables can be continuous or discrete and consist of "other" variables which are to be mapped through the
simulation interface. Each state variable specification can have an initial state, lower and upper bounds, and
descriptors. State variables provide a convenient mechanism for parameterizing additional model inputs,
such as mesh density, simulation convergence tolerances and time step controls, and can be used to enact
model adaptivity in future strategy developments.

Several examples follow. In the first example, two continuous design variables are specified:

vari abl es, \

conti nuous_design = 2 \
cdv_initial _point 0
cdv_upper _bounds 5
cdv_| ower _bounds 0.
cdv_descriptors "rad

1.1\
2.9\
2.9\
| ocati on

In the next example, defaults are employed. In this case, cdv_i ni ti al _poi nt will default to a vector
of 0. values, cdv_upper _bounds will default to vector values of DBL_MAX (the maximum number
representable in double precision for a particular platform, as defined in the platform’s f | oat . h C header
file), cdv_I| ower _bounds will default to a vector of - DBL_MAXvalues, and cdv_descri pt or s will
default to a vector of " cdv_i ’ strings, where i ranges from one to two:

84 Variables Commands

vari abl es, \
conti nuous_design = 2

In the following example, the syntax for a normal-lognormal distribution is shown. One normal and
one lognormal uncertain variable are completely specified by their means and standard deviations. In
addition, the dependence structure between the two variables is specified using the uncertai n_-
correlation_nmatrix.

vari abl es
normal _uncertain = 1
nuv_nmneans = 1.
nuv_std_devi ati ons 1
nuv_descriptors
| ognor mal _uncertain 1
| nuv_neans = 2.0
0.5

| nuv_std_deviations .
| nuv_descriptors = TF2I n’
uncertain_correlation_matrix =

1

=

o}
e e e —

An example of the syntax for a state variables specification follows:

vari abl es, \
continuous_state =1 \
csv_initial _state 4.0 \
csv_| ower _bounds 0.0 \
csv_upper _bounds 8.0 \
csv_descriptors ' CS1’ \
discrete_state = 1 \
dsv_initial _state 104 \
dsv_I| ower _bounds 100 \
dsv_upper _bounds 110 \
dsv_descriptors ' DS’

And in a more advanced example, a variables specification containing a set identifier, continuous and dis-
crete design variables, normal and uniform uncertain variables, and continuous and discrete state variables

is shown:

vari abl es, \
id_variables = "V1'\
continuous_design = 2\
cdv_initial_point 0
cdv_upper _bounds 5
cdv_| ower _bounds 0.
cdv_descriptors "rad
discrete_design = 1 \
ddv_initial _point 2
ddv_upper _bounds 1
ddv_| ower _bounds 3
t

ddv_descriptors "material’\

normal _uncertain = 2\
nuv_means

\

248.89, 593.33\

nuv_std_devi ati ons = 12. 4, 29.7 \
nuv_descriptors = ' TF1n’ " TF2n’ \
uni formuncertain = 2\
uuv_di st_| ower _bounds = 199.3, 474.63 \
uuv_di st _upper_bounds = 298.5, 712. \
uuv_descriptors = 'TF1u " TR2u' \

continuous_state = 2 \

csv_initial _state = 1.e-4 1l.e-6\

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

6.2 Variables Specification 85

csv_descriptors = "EPSI T1' ' EPSIT2'\
discrete_state = 1\

dsv_initial _state = 100 \

dsv_descriptors = 'l oad_case’

Refer to the DAKOTA Users Manual [Eldred et al., 2004a] for discussion on how different iterators view
these mixed variable sets.

6.2 Variables Specification
The variables specification has the following structure:

vari ables, \

<set identifier>\

<continuous design variabl es specification>\
<di screte design variabl es specificati on>\
<normal uncertain variables specification>\

<l ognormal uncertain variabl es specification>\
<uni formuncertain variabl es specification>\
<l oguni formuncertain variabl es specification>\
<wei bul | uncertain variabl es specification>\
<hi st ogram uncertai n vari abl es specification>\
<uncertain correl ation specification> \
<continuous state variabl es specification>\
<di screte state variabl es specification>

Referring to dakota.input.spec, it is evident from the enclosing brackets that the set identifier specification,
the uncertain correlation specification, and each of the variables specifications are all optional. The set
identifier and uncertain correlation are stand-alone optional specifications, whereas the variables specifica-
tions are optional group specifications, meaning that the group can either appear or not as a unit. If any
part of an optional group is specified, then all required parts of the group must appear.

The optional status of the different variable type specifications allows the user to specify only those vari-
ables which are present (rather than explicitly specifying that the number of a particular type of variables
= 0). However, at least one type of variables must have nonzero size or an input error message will result.
The following sections describe each of these specification components in additional detail.

6.3 Variables Set Identifier

The optional set identifier specification uses the keywordi d_var i abl es to input a unique string for use
in identifying a particular variables set. A method can then identify the use of this variables set by specify-
ing the same string in its var i abl es_poi nt er specification (see Method Independent Controls). For
example, a method whose specification contains var i abl es_poi nter = ' V1" will use a variables
specification containing the set identifieri d_vari abl es = " V1'.

If the i d_vari abl es specification is omitted, a particular variables set will be used by a method only
if that method omits specifying a var i abl es_poi nt er and if the variables set was the last set parsed
(or is the only set parsed). In common practice, if only one variables set exists, theni d_var i abl es can
be safely omitted from the variables specification and var i abl es_poi nt er can be omitted from the
method specification(s), since there is no potential for ambiguity in this case. Table 6.1 summarizes the set
identifier inputs.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

86 Variables Commands
Description Keyword Associated Data | Status Default
Variables set i d_variabl es | string Optional use of last
identifier variables parsed

Table 6.1: Specification detail for set identifier

6.4 Design Variables

Within the optional continuous design variables specification group, the number of continuous design vari-
ables is a required specification and the initial guess, lower bounds, upper bounds, and variable names
are optional specifications. Likewise, within the optional discrete design variables specification group, the
number of discrete design variables is a required specification and the initial guess, lower bounds, upper
bounds, and variable names are optional specifications. Table 6.2 summarizes the details of the continuous
design variable specification and Table 6.3 summarizes the details of the discrete design variable specifica-

tion.
Description Keyword Associated Data | Status Default
Continuous conti nuous_- | integer Optional group no continuous
design variables desi gn design variables
Initial point cdv_- list of reals Optional vector values = 0.
initial -
poi nt
Lower bounds cdv_| owner _- list of reals Optional vector values =
bounds - DBL_MAX
Upper bounds cdv_upper _- list of reals Optional vector values =
bounds +DBL_ MAX
Descriptors cdv_- list of strings Optional vector of
descriptors "cdv_i ' where
i =1,2,3...
Table 6.2: Specification detail for continuous design variables
Description Keyword Associated Data | Status Default
Discrete design di screte_- integer Optional group no discrete design
variables desi gn variables
Initial point ddv_- list of integers Optional vector values = 0
initial -
poi nt
Lower bounds ddv_I owner _- list of integers Optional vector values =
bounds INT_MN
Upper bounds ddv_upper _- list of integers Optional vector values =
bounds I NT_MAX
Descriptors ddv_- list of strings Optional vector of

descriptors

"ddv_i’ where

| =
1,2,3,...

Table 6.3: Specification detail for discrete design variables

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

6.5 Uncertain Variables 87

The cdv_ini tial _point and ddv_i niti al _poi nt specifications provide the point in design
space from which an iterator is started for the continuous and discrete design variables, respectively. The
cdv_| ower bounds,ddv_| ower bounds,cdv_upper _bounds andddv_upper _bounds re-
strict the size of the feasible design space and are frequently used to prevent nonphysical designs. The
cdv_descriptors and ddv_descri pt or s specifications supply strings which will be replicated
through the DAKOTA output to help identify the numerical values for these parameters. Default values
for optional specifications are zeros for initial values, positive and negative machine limits for upper and
lower bounds (+/- DBL_MAX, | NT_MAX, | NT_M Nfromthe fl oat. hand!i mts. h system header
files), and numbered strings for descriptors. As for linear and nonlinear inequality constraint bounds (see
Method Independent Controls and Objective and constraint functions (optimization data set)), a nonexis-
tent upper bound can be specified by using a value greater than the "big bound size" constant (1.e+30 for
continuous design variables, 1e+9 for discrete design variables) and a nonexistent lower bound can be spec-
ified by using a value less than the negation of these constants (-1.e+30 for continuous, -1e+9 for discrete),
although not all optimizers currently support this feature (e.g., DOT and CONMIN will treat these large
bound values as actual variable bounds, but this should not be problematic in practice).

6.5 Uncertain Variables

Uncertain variables involve one of several supported probability distribution specifications, including nor-
mal, lognormal, uniform, loguniform, weibull, or histogram distributions. Each of these specifications is
an optional group specification. Within the normal uncertain optional group specification, the number of
normal uncertain variables, the means, and standard deviations are required specifications, and the distri-
bution lower and upper bounds and variable descriptors are optional specifications. Within the lognormal
uncertain optional group specification, the number of lognormal uncertain variables, the means, and either
standard deviations or error factors must be specified, and the distribution lower and upper bounds and
variable descriptors are optional specifications. Within the uniform uncertain optional group specification,
the number of uniform uncertain variables and the distribution lower and upper bounds are required spec-
ifications, and variable descriptors is an optional specification. Within the loguniform uncertain optional
group specification, the number of loguniform uncertain variables and the distribution lower and upper
bounds are required specifications, and variable descriptors is an optional specification. Within the weibull
uncertain optional group specification, the number of weibull uncertain variables and the alpha and beta
parameters are required specifications, and the distribution lower and upper bounds and variable descrip-
tors are optional specifications. And finally, within the histogram uncertain optional group specification,
the number of histogram uncertain variables is a required specification, the bin pairs and point pairs are
optional group specifications, and the variable descriptors is an optional specification.

The inclusion of lower and upper distribution bounds for all uncertain variable types (either explicitly
or implicitly) allows the use of these variables with methods that rely on a bounded region to define a
set of function evaluations (i.e., design of experiments and some parameter study methods). In addition,
distribution bounds can be used to truncate the tails of distributions for normal and lognormal uncertain
variables (see "bounded normal”, "bounded lognormal”, and "bounded lognormal-n" distribution types in
[Wyss and Jorgensen, 1998]). Default upper and lower bounds are positive and negative machine limits (+/-
DBL_MAXfrom the f | oat . h system header file), respectively, for non-logarithmic distributions and posi-
tive machine limits and zeros, respectively, for logarithmic distributions. The uncertain variable descriptors
provide strings which will be replicated through the DAKOTA output to help identify the numerical val-
ues for these parameters. Default values for descriptors are numbered strings. Tables 6.4 through 6.9
summarize the details of the uncertain variable specifications.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

88

Variables Commands

Description Keyword Associated Data | Status Default

normal uncertain | nor mal _- integer Optional group no normal

variables uncertain uncertain
variables

normal uncertain | nuv_neans list of reals Required N/A

means

normal uncertain nuv_std_- list of reals Required N/A

standard devi ati ons

deviations

Distribution nuv_di st _- list of reals Optional vector values =

lower bounds | ower _bounds - DBL_MAX

Distribution nuv_di st _- list of reals Optional vector values =

upper bounds upper _bounds +DBL_ MAX

Descriptors nuv_- list of strings Optional vector of

descriptors "nuv_i ' where

| =
1,2,3,...

Table 6.4: Specification detail for normal uncertain variables

For the lognormal variables, DAKOTA’s uncertainty quantification methods standardize on the use of statis-
tics of the actual lognormal distribution, as opposed to statistics of the underlying normal distribution. This
approach diverges from that of [Wyss and Jorgensen, 1998], which assumes that a specification of means
and standard deviations provides parameters of the underlying normal distribution, whereas a specification
of means and error factors provides statistics of the actual lognormal distribution. By binding the mean,
standard deviation, and error factor parameters consistently to the actual lognormal distribution, inputs are
more intuitive and require fewer conversions in most user applications. The conversion equations from
lognormal mean v and either lognormal error factor ey or lognormal standard deviation oy to the
mean p v and standard deviation oy of the underlying normal distribution are as follows:

ln(eLN)
1.645

2

0% =In(ZLN 4 1.)
1995

ON =

02

pn = In(prn) — TN

Conversions from ux and on back to pr.n and e n or o n are as follows:

2

N
ULN = eHN-‘r o)
2 _ 2[I/N+0'12V(012\, _ 1)
oLN = € e .
ELN = 61.6450'1\1

For the histogram uncertain variable specification, the bin pairs and point pairs specifications provide sets
of (x,y) pairs for each histogram variable. The distinction between the two types is that the former specifies
counts for bins of non-zero width, whereas the latter specifies counts for individual point values, which
can be thought of as bins with zero width. In the terminology of LHS [Wyss and Jorgensen, 1998], the

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

6.5 Uncertain Variables 89
Description Keyword Associated Data | Status Default
lognormal | ognor mal _- integer Optional group no lognormal
uncertain uncertain uncertain
variables variables
lognormal | nuv_neans list of reals Required N/A
uncertain means
lognormal | nuv_std._- list of reals Required (1 of 2 N/A
uncertain devi ati ons selections)
standard
deviations
lognormal I nuv_error_- | listof reals Required (1 of 2 N/A
uncertain error factors selections)
factors
Distribution | nuv_di st _- list of reals Optional vector values = 0.
lower bounds | ower bounds
Distribution | nuv_di st _- list of reals Optional vector values =
upper bounds upper _bounds +DBL_ MAX
Descriptors | nuv_- list of strings Optional vector of

descriptors "l nuv_i’
wherei =
1,2,3,...

Table 6.5: Specification detail for lognormal uncertain variables

former is a "continuous linear histogram" and the latter is a "discrete histogram" (although the points are
real-valued, the number of possible values is finite). To fully specify a bin-based histogram with n bins
where the bins can be of unequal width, n+1 (x,y) pairs must be specified with the following features:

for that bin.

the x values must be strictly increasing.

all y values must be positive, except for the last which must be zero.

a minimum of two (X,y) pairs must be specified for each bin-based histogram.

X is the parameter value for the left boundary of a histogram bin and y is the corresponding count

the final pair specifies the right end of the last bin and must have a y value of zero.

Similarly, to specify a point-based histogram with n points, n (X,y) pairs must be specified with the follow-

ing features:

e x is the point value and y is the corresponding count for that value.

o the x values must be strictly increasing.

e all y values must be positive.

e aminimum of one (X,y) pair must be specified for each point-based histogram.

For both cases, the number of pairs specifications provide for the proper association of multiple sets of
(x,y) pairs with individual histogram variables. For example, in the following specification

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

90

Variables Commands

Description Keyword Associated Data | Status Default

uniform uncertain | uni form - integer Optional group no uniform

variables uncertain uncertain
variables

Distribution uuv_di st _- list of reals Required N/A

lower bounds | ower bounds

Distribution uuv_di st _- list of reals Required N/A

upper bounds upper _bounds

Descriptors uuv_- list of strings Optional vector of

descriptors "uuv_i ' where
| =
1,2,3,...
Table 6.6: Specification detail for uniform uncertain variables

Description Keyword Associated Data | Status Default

loguniform | oguni form - | integer Optional group no loguniform

uncertain uncertain uncertain

variables variables

Distribution | uuv_di st_- list of reals Required N/A

lower bounds | ower bounds

Distribution | uuv_di st _- list of reals Required N/A

upper bounds upper _bounds

Descriptors l uuv_- list of strings Optional vector of

descriptors "luuv_i’

wherei =
1,2,3,...

Table 6.7: Specification detail for loguniform uncertain variables

hi st ogram uncertain = 3

\
huv_num bin_pairs =34\
huv_bi n_pairs =517821100 .1 12 .2 24 .3 12 .40\
huv_num point _pairs =2\
huv_poi nt _pairs =3141

huv_num bi n_pai r s associates the first 3 pairs from huv_bi n_pai r s ((5,17),(8,21),(10,0)) with
one bin-based histogram variable and the following set of 4 pairs ((.1,12),(.2,24),(.3,12),(.4,0)) with a sec-
ond bin-based histogram variable. Likewise, huv_num poi nt _pai r s associates both of the (x,y) pairs
from huv_poi nt _pai rs ((3,1),(4,1)) with a single point-based histogram variable. Finally, the total
number of bin-based variables and point-based variables must add to the total number of histogram vari-
ables specified (3 in this example).

Uncertain variables may have correlations specified through use of an uncertai n_correl ati on_-
mat ri x specification. This specification is generalized in the sense that its specific meaning depends
on the nondeterministic method in use. When the method is a nondeterministic sampling method (i.e.,
nond_sanpl i ng), then the correlation matrix specifies rank correlations [Iman and Conover, 1982].
When the method is instead a reliability (i.e., nond_r el i abi | i t y) or polynomial chaos (i.e., nond_-
pol ynomi al _chaos) method, then the correlation matrix specifies correlation coefficients (normalized
covariance) [Haldar and Mahadevan, 2000]. In either of these cases, specifying the identity matrix results
in uncorrelated uncertain variables (the default). The matrix input should have n? entries listed by rows
where n is the total number of uncertain variables (all normal, lognormal, uniform, loguniform, weibull,
and histogram specifications, in that order). Table 6.10 summarizes the specification details:

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

6.6 State Variables 91

Description Keyword Associated Data | Status Default

weibull uncertain | wei bul | _- integer Optional group no weibull

variables uncertain uncertain
variables

weibull uncertain | wuv_al phas list of reals Required N/A

alphas

weibull uncertain | wuv_bet as list of reals Required N/A

betas

Distribution wuv_di st _- list of reals Optional vector values =

lower bounds | ower _bounds - DBL_MAX

Distribution wuv_di st _- list of reals Optional vector values =

upper bounds upper _bounds +DBL_ MAX

Descriptors wuv_ - list of strings Optional vector of

descriptors "wuv_i ' where

| =
1,2,3,...

Table 6.8: Specification detail for weibull uncertain variables

6.6 State Variables

Within the optional continuous state variables specification group, the number of continuous state variables
is a required specification and the initial states, lower bounds, upper bounds, and variable descriptors are
optional specifications. Likewise, within the optional discrete state variables specification group, the num-
ber of discrete state variables is a required specification and the initial states, lower bounds, upper bounds,
and variable descriptors are optional specifications. These variables provide a convenient mechanism for
managing additional model parameterizations such as mesh density, simulation convergence tolerances,
and time step controls. Table 6.11 summarizes the details of the continuous state variable specification and
Table 6.12 summarizes the details of the discrete state variable specification.

Thecsv_initial _stateanddsv_initial _stat e specifications define the initial values for the
continuous and discrete state variables which will be passed through to the simulator (e.g., in order to define
parameterized modeling controls). The csv_| ower _bounds,csv_upper _bounds,dsv_| ower -
bounds, and dsv_upper _bounds restrict the size of the state parameter space and are frequently used
to define a region for design of experiments or parameter study investigations. The csv_descri ptors
and dsv_descri pt or s specifications provide strings which will be replicated through the DAKOTA
output to help identify the numerical values for these parameters. Default values for optional specifications
are zeros for initial states, positive and negative machine limits for upper and lower bounds (+/- DBL_MAX,
I NT_MAX, | NT_M Nfromthefl oat. handl i mts. h system header files), and numbered strings for
descriptors.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

92 Variables Commands
Description Keyword Associated Data | Status Default
histogram hi st ogram - integer Optional group no histogram
uncertain uncertain uncertain
variables variables
number of (X,y) huv_num - list of integers Optional group no bin-based
pairs for each bin_pairs histogram
bin-based uncertain
histogram variables
variable
(x,y) pairs for all huv_bi n_- list of reals Optional group no bin-based
bin-based pairs histogram
histogram uncertain
variables variables
number of (x,y) huv_num - list of integers Optional group no point-based
pairs for each point _pairs histogram
point-based uncertain
histogram variables
variable
(x,y) pairs for all huv_poi nt _- list of reals Optional group no point-based
point-based pairs histogram
histogram uncertain
variables variables
Descriptors huv_- list of strings Optional vector of

descriptors

"huv_i’ where

i =
1,2,3,...

descriptors

Table 6.9: Specification detail for histogram uncertain variables

Description Keyword Associated Data | Status Default
correlations in uncertain_- list of reals Optional identity matrix
uncertain correlation_- (uncorrelated)
variables mat ri x

Table 6.10: Specification detail for uncertain correlations
Description Keyword Associated Data | Status Default
Continuous state conti nuous_- | integer Optional group No continuous
variables state state variables
Initial states CSV_- list of reals Optional vector values = 0.

initial -

state
Lower bounds csv_| owner - list of reals Optional vector values =

bounds - DBL_MAX
Upper bounds csv_upper _- list of reals Optional vector values =

bounds +DBL_ MAX
Descriptors CSV_- list of strings Optional vector of

"csv_i ' where

| =
1,2,3,...

Table 6.11: Specification detail for continuous state variables

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

6.6 State Variables 93

Description Keyword Associated Data | Status Default

Discrete state di screte_- integer Optional group No discrete state

variables state variables

Initial states dsv_- list of integers Optional vector values = 0
initial -
state

Lower bounds dsv_| owner _- list of integers Optional vector values =
bounds INT_MN

Upper bounds dsv_upper _- list of integers Optional vector values =
bounds I NT_MAX

Descriptors dsv_- list of strings Optional vector of

descriptors

"dsv_i’ where

| =
1,2,3,...

Table 6.12: Specification detail for discrete state variables

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

94

Variables Commands

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 7

| nter face Commands

7.1 Interface Description

The interface section in a DAKOTA input file specifies how function evaluations will be performed. Func-
tion evaluations can be performed using either an interface with a simulation code or an interface with an
approximation method.

In the former case of a simulation, the application interface is used to invoke the simulation with either
system calls, forks, direct function invocations, or computational grid invocations. In the system call and
fork cases, communication between DAKOTA and the simulation occurs through parameter and response
files. In the direct function case, communication occurs through the function parameter list. The direct case
can involve linked simulation codes or analytic test functions which are compiled into the DAKOTA exe-
cutable. The analytic test functions allow for rapid testing of algorithms without process creation overhead
or engineering simulation expense. The grid case is experimental and under development.

In the case of an approximation, an approximation interface can be selected to make use of the global, local,
multipoint, and hierarchical surrogate modeling capabilities available within DAKOTA’s Approximation-
Interface class and Approximation class hierarchy.

Several examples follow. The first example shows an application interface specification which specifies
the use of system calls, the names of the analysis executable and the parameters and results files, and
that parameters and responses files will be tagged and saved. Refer to Application Interface for more
information on the use of these options.

interface, \
application system\

anal ysi s_drivers " rosenbrock’\

paraneters_file = 'paranms.in’ \
results file = 'results.out’\
file_tag \

file_save

The next example shows a similar specification, except that an external r osenbr ock executable has been
replaced by use of the internal r osenbr ock test function from the DirectFnAppliclnterface class.

interface, \
application direct \
anal ysis_drivers = 'rosenbrock’

96 Interface Commands

The final example shows an approximation interface specification which selects a quadratic polynomial
approximation from among the global approximation methods. It uses a pointer to a design of experiments
method for generating the data needed for building a global approximation, reuses any old data available
for the current approximation region, and employs the first-order multiplicative approach to correcting the
approximation at the center of the current approximation region.

interface, \
appr oxi mati on gl obal \
quadratic pol ynomi al \
dace_net hod_poi nter = ' DACE \
reuse_sanpl es regi on \

correction nultiplicative first_order

Additional information on interfacing with simulations and approximations is provided in the following
sections.

7.2 Interface Specification

The interface specification has the following top-level structure:

interface, \

<set identifier>\

<appl i cation specification> OR \
<approxi mati on specification>

where the set identifier is an optional specification and either an application or approximation interface
must be specified. If an application interface is specified, its type must be system, fork, direct, or grid, i.e.:

interface, \
<set identifier>\
appl i cation \
<systemcal | specification> OR \
<fork specification> OR \

<direct function specification> OR
<grid specification>

If an approximation interface is specified, its type must be global, multipoint, local, or hierarchical, i.e.:

interface, \
<set identifier>\
appr oxi mat i on \
<gl obal specification> OR \
<mul ti poi nt specification> OR \
<l ocal specification> OR \

<hi erarchi cal specification>

The following sections describe each of these interface specification components in additional detail.

7.3 Interface Set Identifier

The optional set identifier specification uses the keywordi d_i nt er f ace to input a string for use in iden-
tifying a particular interface specification. A method can then identify the use of this interface by specifying

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

7.4 Application Interface 97

the same string in its i nt er f ace_poi nt er specification (see Method Independent Controls). For ex-
ample, a method whose specification contains i nt er f ace_poi nter = ' 11" will use an interface
specificationwithi d_interface = "11’'.

If the i d_i nt er face specification is omitted, a particular interface specification will be used by a
method only if that method omits specifying a i nt er f ace_poi nt er and if the interface set was the
last set parsed (or is the only set parsed). In common practice, if only one interface set exists, theni d_-
i nt er face can be safely omitted from the interface specification and i nt er f ace_poi nt er can be
omitted from the method specification(s), since there is no potential for ambiguity in this case. Table 7.1
summarizes the set identifier inputs.

Description Keyword Associated Data | Status Default
Interface set id_interface | string Optional use of last
identifier interface parsed

Table 7.1: Specification detail for set identifier

7.4 Application Interface

The application interface uses a simulator program, and optionally filter programs, to perform the param-
eter to response mapping. The simulator and filter programs are invoked with system calls, forks, direct
function calls, or computational grid invocations. In the system call and fork cases, files are used for
transfer of parameter and response data between DAKOTA and the simulator program. This approach is
simple and reliable and does not require any modification to simulator programs. In the direct function
case, subroutine parameter lists are used to pass the parameter and response data. This approach requires
modification to simulator programs so that they can be linked into DAKOTA; however it can be more ef-
ficient through the elimination of process creation overhead, can be less prone to loss of precision in that
data can be passed directly rather than written to and read from a file, and can enable completely internal
management of multiple levels of parallelism through the use of MPI communicator partitioning. In the
grid case, computational grid services are utilized in order to enable distribution of simulations across dif-
ferent computer resources. This capability will utilize Condor and/or Globus services and is experimental
and incomplete.

The application interface group specification contains several specifications which are valid for all applica-
tion interfaces as well as additional specifications pertaining specifically to system call, fork, direct, or grid
application interfaces. Tables 7.2 and 7.3 summarize the specifications valid for all application interfaces,
and Tables 7.4, 7.5, 7.6, and 7.7 summarize the additional specifications for system call, fork, direct, and
grid application interfaces, respectively.

In Table 7.2, the required anal ysi s_dr i ver s specification provides the names of executable analysis
programs or scripts which comprise a function evaluation. The common case of a single analysis driver is
simply accommodated by specifying a list of one driver (this also provides backward compatibility with
previous DAKOTA versions). The optional i nput _fi | t er and out put _fi | t er specifications pro-
vide the names of separate pre- and post-processing programs or scripts which assist in mapping DAKOTA
parameters files into analysis input files and mapping analysis output files into DAKOTA results files, re-
spectively. If there is only a single analysis driver, then it is usually most convenient to combine pre- and
post-processing requirements into a single analysis driver script and omit the separate input and output
filters. However, in the case of multiple analysis drivers, the input and output filters provide a convenient
location for non-repeated pre- and post-processing requirements. That is, input and output filters are only

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

98 Interface Commands
Description Keyword Associated Data | Status Default
Application application none Required group N/A
interface (1 of 2 selections)

Analysis drivers anal ysis_- list of strings Required N/A
drivers

Input filter i nput _filter | string Optional no input filter

Output filter out put _- string Optional no output filter
filter

Failure capturing | failure_- abort |retry | Optional group abort
capture (with integer

data) | r ecover
(with list of reals

eval uation_-
cache, and/or
restart _file

data) |

conti nuati on
Feature deactivate active_set - | Optional group Active set vector
deactivation vect or, control, function

evaluation cache,
and restart file
features are active

Table 7.2: Specification detail for application interfaces: drivers, filters, failure capturing, and feature
management

executed once per function evaluation, regardless of the number of analysis drivers, which makes them
convenient locations for data processing operations that are shared among the analysis drivers.

Failure capturing in application interfaces is governed by the optional f ai | ur e_capt ur e specification.
Supported directives for mitigating captured failures are abort (the default), retry, recover, and
conti nuati on. Ther et ry selection supports an integer input for specifying a limit on retries, and the
recover selection supports a list of reals for specifying the dummy function values (only zeroth order
information is supported) to use for the failed function evaluation. Refer to the Simulation Code Failure
Capturing chapter of the Users Manual for additional information.

The optional deact i vat e specification block includes three features which a user may deactivate in order
to simplify interface development, increase execution speed, and/or reduce memory and disk requirements:

e Active set vector (ASV) control: deactivation of this feature using a deacti vate acti ve_-
set _vect or specification allows the user to turn off any variability in ASV values so that active
set logic can be omitted in the user’s simulation interface. This option trades some efficiency for
simplicity in interface development. The default behavior is to request the minimum amount of data
required by an algorithm at any given time, which implies that the ASV values may vary from one
function evaluation to the next. Since the user’s interface must return the data set requested by the
ASV values, this interface must contain additional logic to account for any variations in ASV con-
tent. Deactivating this ASV control causes DAKOTA to always request a "full" data set (the full
function, gradient, and Hessian data that is available from the interface as specified in the responses
specification) on each function evaluation. For example, if ASV control has been deactivated and
the responses section specifies four response functions, analytic gradients, and no Hessians, then the
ASV on every function evaluation will be { 3 3 3 3 }, regardless of what subset of this data is cur-
rently needed. While wasteful of computations in many instances, this simplifies the interface and
allows the user to return the same data set on every evaluation. Conversely, if ASV control is active
(the default behavior), then the ASV requests in this example might vary from{1111}t0o {2002
}, etc., according to the specific data needed on a particular function evaluation. This will require the
user’s interface to read the ASV requests and perform the appropriate logic in conditionally returning
only the data requested. In general, the default ASV behavior is recommended for the sake of com-

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

7.4 Application Interface

99

Description Keyword Associated Data | Status Default
Asynchronous asynchronous | none Optional group synchronous
interface usage interface usage
Asynchronous eval uati on_- | integer Optional local: unlimited
evaluation concurrency concurrency,
concurrency hybrid: no
concurrency
Asynchronous anal ysis_- integer Optional local: unlimited
analysis concurrency concurrency,
concurrency hybrid: no
concurrency
Number of eval uati on_- | integer Optional no override of
evaluation servers | servers auto configure
Self scheduling eval uation_- | none Optional no override of
of evaluations sel f_- auto configure
schedul i ng
Static scheduling | eval uati on_- | none Optional no override of
of evaluations static_- auto configure
schedul i ng
Number of anal ysi s_- integer Optional no override of
analysis servers servers auto configure
Self scheduling anal ysis_- none Optional no override of
of analyses sel f_- auto configure
schedul i ng
Static scheduling | anal ysis_- none Optional no override of
of analyses static_- auto configure
schedul i ng

Table 7.3: Specification detail for application interfaces: parallelism controls

putational efficiency, unless interface developmenttime is a critical concern. Note that in both cases,
the data returned to DAKOTA from the user’s interface must match the ASV passed in, or else a re-
sponse recovery error will result. However, when the ASV control is deactivated, the ASV values are
invariant and need not be checked on every evaluation. Note: Deactivating the ASV control can have
a positive effect on load balancing for parallel DAKOTA executions. Thus, there is significant over-
lap in this ASV control option with speculative gradients (see Method Independent Controls). There
is also overlap with the mode override approach used with certain optimizers (see SNLLOptimizer
and SNLL LeastSq) to combine individual value, gradient, and Hessian requests.

Function evaluation cache: deactivation of this feature using a deacti vat e eval uati on_-
cache specification allows the user to avoid retention of the complete function evaluation history
in memory. This can be important for reducing memory requirements in large-scale applications
(i.e., applications with a large number of variables or response functions) and for eliminating the
overhead of searching for duplicates within the function evaluation cache prior to each new function
evaluation (e.g., for improving speed in problems with 1000’s of inexpensive function evaluations
or for eliminating overhead when performing timing studies). However, the downside is that unnec-
essary computations may be performed since duplication in function evaluation requests may not
be detected. For this reason, this option is not recommended when function evaluations are costly.
Note: duplication detection within DAKOTA can be deactivated, but duplication detection features
within specific optimizers may still be active.

Restart file: deactivation of this featureusingadeact i vat erestart _fi | e specification allows
the user to eliminate the output of each new function evaluation to the binary restart file. This can

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

100 Interface Commands

increase speed and reduce disk storage requirements, but at the expense of a loss in the ability
to recover and continue a run that terminates prematurely (e.g., due to a system crash or network
problem). This option is not recommended when function evaluations are costly or prone to failure.

In Table 7.3, the optional asynchr onous flag specifies use of asynchronous protocols (i.e., back-
ground system calls, nonblocking forks, POSIX threads) when evaluations or analyses are invoked. The
eval uati on_concurrency and anal ysi s_concur r ency specifications serve a dual purpose:

¢ when running DAKOTA on a single processor in asynchr onous mode, the default concurrency of
evaluations and analyses is all concurrency that is available. The eval uati on_concurrency
and anal ysi s_concurr ency specifications can be used to limit this concurrency in order to
avoid machine overload or usage policy violation.

e when running DAKOTA on multiple processors in message passing mode, the default concurrency
of evaluations and analyses on each of the servers is one (i.e., the parallelism is exclusively that of
the message passing). With the eval uat i on_concurrency and anal ysi s_concurrency
specifications, a hybrid parallelism can be selected through combination of message passing paral-
lelism with asynchronous parallelism on each server.

The optional eval uati on_server s andanal ysi s_ser ver s specifications support user overrides
of the automatic parallel configuration for the number of evaluation servers and the humber of analy-
sis servers. Similarly, the optional eval uati on_sel f _schedul i ng, eval uati on_static_-
schedul i ng, anal ysi s_sel f _schedul i ng, and anal ysi s_stati c_schedul i ng specifi-
cations can be used to override the automatic parallel configuration of scheduling approach at the evalua-
tion and analysis parallelism levels. That is, if the automatic configuration is undesirable for some reason,
the user can enforce a desired number of partitions and a desired scheduling policy at these parallelism
levels. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual for additional
information.

In addition to the general application interface specifications, the type of application interface involves
a selection between syst em f or k, di rect, or gri d required group specifications. The following
sections describe these group specifications in detail.

7.4.1 System call application interface

For system call interfaces, thepar aneters_fil e,results_fil e,anal ysi s_usage, apr epr o,
file_tag,andfil e_save are additional settings within the group specification. The parameters and
results file names are supplied as strings using the paraneters_fileandresults_fil e specifi-
cations. Both specifications are optional with the default data transfer files being Unix temporary files
with system-generated names (e.g., / usr/ t np/ aaaa08861). The parameters and results file names are
passed on the command line to the analysis driver(s). Special analysis command syntax can be entered as
a string with the anal ysi s_usage specification. This special syntax replaces the normal system call
combination of the specified anal ysi s_dri ver s with command line arguments; however, it does not
affect the i nput _filter and out put _filter syntax (if filters are present). Note that if there are
multiple analysis drivers, then anal ysi s_usage must include the syntax for all analyses in a single
string (typically separated by semi-colons). The default is no special syntax, such that the anal ysi s_-
dri ver s will be used in the standard way as described in the Interfaces chapter of the Users Manual. The
format of data in the parameters files can be modified for direct usage with the APREPRO pre-processing
tool [Sjaardema, 1992] using the apr epr o specification (NOTE: the DPrePro pre-processing utility does
not require this special formatting). File tagging (appending parameters and results files with the func-
tion evaluation number) and file saving (leaving parameters and results files in existence after their use is
complete) are controlled withthe fi | e_tagandfi | e_save flags. If these specifications are omitted,

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

7.4 Application Interface 101

the default is no file tagging (no appended function evaluation number) and no file saving (files will be
removed after a function evaluation). File tagging is most useful when multiple function evaluations are
running simultaneously using files in a shared disk space, and file saving is most useful when debugging
the data communication between DAKOTA and the simulation. The additional specifications for system
call application interfaces are summarized in Table 7.4.

Description Keyword Associated Data | Status Default
System call system none Required group N/A
application (1 of 4 selections)

interface

Parameters file paraneters_- | string Optional Unix temp files
name file

Results filename | results _file | string Optional Unix temp files
Special analysis anal ysis_- string Optional standard analysis
usage syntax usage usage

Aprepro apr epro none Optional standard
parameters file parameters file
format format
Parameters and file tag none Optional no tagging
results file

tagging

Parameters and file_save none Optional file cleanup
results file saving

Table 7.4: Additional specifications for system call application interfaces

7.4.2 Fork application interface

For fork application interfaces, the par aneters_file,results _file,aprepro,file_tag,and
fil e_save are additional settings within the group specification and have identical meanings to those
for the system call application interface. The only difference in specifications is that fork interfaces do
not support an anal ysi s_usage specification due to limitations in the execvp() function used when
forking a process. The additional specifications for fork application interfaces are summarized in Table 7.5.

7.4.3 Direct function application interface

For direct function application interfaces, processors_per _anal ysi s and nodel center _-
file are additional optional settings within the required group which can be used to spec-
ify multiprocessor analysis partitions and the configuration filename for a ModelCenter simula-
tion, respectively. As with the eval uati on_servers, anal ysis_servers, eval uati on_-
sel f _schedul i ng, eval uati on_static_schedul i ng, anal ysis_sel f_schedul i ng,
and anal ysis_static_schedul i ng specifications described above in Application Interface,
processors_per_anal ysi s providesa means for the user to override the automatic parallel configu-
ration (refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual) for the number of
processors used for each analysis partition. Note that if bothanal ysi s_server sandprocessors_-
per _anal ysi s are specified and they are not in agreement, then anal ysi s_ser ver s takes prece-
dence. DAKOTA supports a direct interface to ModelCenter, a commercial simulation management
framework from Phoenix Integration. To utilize this interface, a user must first define the simulation

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

102 Interface Commands
Description Keyword Associated Data | Status Default
Fork application fork none Required group N/A

interface

(1 of 4 selections)

results file saving

Parameters file paraneters_- | string Optional Unix temp files
name file

Results filename | results_file | string Optional Unix temp files
Aprepro apr epro none Optional standard
parameters file parameters file
format format
Parameters and file tag none Optional no tagging
results file

tagging

Parameters and file_save none Optional file cleanup

Table 7.5: Additional specifications for fork application interfaces

specifics within a ModelCenter session and then save these definitions to a ModelCenter configuration
file. The nodel cent er _fi | e specification provides the means to communicate this configuration file

to DAKOTA. The direct application interface specifications are summarized in Table 7.6.

Description Keyword Associated Data | Status Default
Direct function direct none Required group N/A
application (1 of 4 selections)
interface
Number of processors_- | integer Optional no override of
processors per per _anal ysi s auto configure
analysis
Configuration file string Optional direct interface to
for ModelCenter | nodel center _- (required for ModelCenter not
simulation file direct used
ModelCenter
interface)

Table 7.6: Additional specifications for direct function application interfaces

In addition to ModelCenter, direct interfaces to Sandia’s SALINAS structural dynamics code and Sandia’s
SIERRA multiphysics framework are available and supported to varying degrees. In addition to interfaces
with simulation codes, a common usage of the direct interface is for invoking internal test problems which
are available for performing parameter to response mappings as inexpensively as possible. These problems
are compiled directly into the DAKOTA executable as part of the direct function application interface class
and are used for algorithm testing. Refer to DirectFnAppliclnterface for currently available testers.

7.4.4 Grid application interface

For grid application interfaces, host nanmes and processors_per _host are additional settings
within the required group. The host names specification provides a list of machines for use in distribut-
ing evaluations, and the pr ocessor s_per _host specification provides the number of processors to use
from each host. This capability is a placeholder for future work with Condor and/or Globus services and
is not currently operational. The additional specifications for grid application interfaces are summarized in
Table 7.7.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

7.5 Approximation Interface 103

Description Keyword Associated Data | Status Default

Grid application grid none Required group N/A

interface (1 of 4 selections)

Names of host host nanes list of strings Required N/A

machines

Number of processors_- | listof integers Optional 1 processor from
processors per per _host each host

host

Table 7.7: Additional specifications for grid application interfaces

7.5 Approximation Interface

The approximation interface uses an approximate representation of a "truth" model to perform the param-
eter to response mappings. This approximation, or surrogate model, is built and updated using data from
the truth model. This data is generated in some cases using a design of experiments iterator applied to the
truth model (global approximations with a dace_mnet hod_poi nt er). In other cases, truth model data
from a single point (local, hierarchical approximations), from a few previously evaluated points (multi-
point approximations), or from the restart database (global approximations with r euse_sanpl es) can
be used. Approximation interfaces are used extensively in the surrogate-based optimization strategy (see
SurrBasedOptStrategy and Surrogate-based Optimization (SBO) Commands), in which the goals are to
reduce expense by minimizing the number of truth function evaluations and to smooth out noisy data with
a global data fit. However, the use of approximation interfaces is not restricted in any way to optimization
techniques, and in fact, the uncertainty quantification methods and optimization under uncertainty strategy
are other primary users.

The approximation interface specification requires the specification of one of the following approximation
types: gl obal , mul ti poi nt, | ocal, or hi erar chi cal . Each of these specifications is a required
group with several additional specifications. The following sections present each of these specification
groups in further detail.

7.5.1 Global approximation interface

The global approximation interface specification requires the specification of one of the following approx-
imation methods: neur al _networ k, pol ynomi al , mars, hermi te, or kri gi ng. These spec-
ifications invoke a layered perceptron artificial neural network approximation, a polynomial regression
approximation, a multivariate adaptive regression spline approximation, a hermite polynomial approxi-
mation, or a kriging interpolation approximation, respectively. In the polynomial case, the order of the
polynomial (linear, quadratic, or cubic) must be specified, and in the kriging case, a vector of correlations
can be optionally specified in order to bypass the internal kriging calculations of correlation coefficients.

For each of the global approximation methods, dace_net hod poi nter, reuse_sanpl es,
correction, and use_gradi ents can be optionally specified. The dace_mnet hod_poi nt er
specification points to a design of experiments iterator which can be used to generate truth model data
for building a global data fit. The r euse_sanpl es specification can be used to employ old data (either
from previous function evaluations performed in the run or from function evaluations read from a restart
database or text file) in the building of new global approximations. The default is no reuse of old data
(since this can induce directional bias), and the settings of al | , r egi on, and sanpl es_fi | e resultin
reuse of all available data, reuse of all data available in the current trust region, and reuse of all data from a

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

104 Interface Commands

specified text file, respectively. The combination of new build data from dace_net hod_poi nt er and
old build data from r euse_sanpl es must be sufficient for building the global approximation. If not
enough data is available, the system will abort with an error message. Both dace_net hod_poi nt er
and r euse_sanpl es are optional specifications, which gives the user maximum flexibility in using de-
sign of experiments data, restart/text file data, or both.

The correcti on specification specifies that the approximation will be corrected to match truth data,
either matching truth values in the case of zer ot h_or der matching, matching truth values and gradi-
ents inthe case of f i r st _or der matching, or matching truth values, gradients, and Hessians in the case
of second_or der matching. For addi tive and nul ti pli cati ve corrections, the correction is
local in that the truth data is matched at a single point, typically the center of the approximation region.
The addi ti ve correction adds a scalar offset (zer ot h_or der), a linear function (fi r st _or der),
or a quadratic function (second_or der) to the approximation to match the truth data at the point, and
the mul ti pl i cati ve correction multiplies the approximation by a scalar (zer ot h_or der), a linear
function (f i r st _or der), or a quadratic function (second_or der) to match the truth data at the point.
The addi tive first_order case is due to [Lewis and Nash, 2000] and the nul ti plicati ve
first_order case is commonly known as beta correction [Haftka, 1991]. For the conbi ned cor-
rection, the use of both additive and multiplicative corrections allows the satisfaction of an additional
matching condition, typically the truth function values at the previous correction point (e.g., the center of
the previous trust region). The combi ned correction is then a multipoint correction, as opposed to the
local addi tiveandrul tiplicati ve corrections. Each of these correction capabilities is described
in detail in [Eldred et al., 2004b].

Finally, the use_gr adi ent s flag specifies a future capability for the use of gradient data in the global
approximation builds. This capability is currently supported in SurrBasedOptStrategy, SurrogateData-
Point, and Approximation::build(), but is not yet supported in any global approximation derived class
redefinitions of Approximation::find_coefficients(). Tables 7.8 and 7.9 summarizes the global approxi-
mation interface specifications.

Description Keyword Associated Data | Status Default
Global gl obal none Required group N/A
approximation (1 of 4 selections)
interface
Artificial neural neural - none Required (1 of 5 N/A
network net wor k selections)
Polynomial pol ynomi al l'i near | Required (1 of 5 N/A
quadratic | selections)
cubi c
Multivariate mar s none Required (1 of 5 N/A
adaptive selections)
regression splines
Hermite hernmite none Required (1 of 5 N/A
polynomial selections)
Kriging kri gi ng none Required group N/A
interpolation (1 of 5 selections)
Kriging correl ations | list of reals Optional internally
correlations computed
correlations

Table 7.8: Specification detail for global approximation interfaces: global approximation type

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

7.5 Approximation Interface 105

Description Keyword Associated Data | Status Default
Design of dace_- string Optional no design of
experiments met hod_- experiments data
method pointer poi nt er
Sample reuse in reuse._- all |region] Optional group no sample reuse
global sanpl es sanples file
approximation
builds
Surrogate correction addi tiveor Optional group no surrogate
correction nmul tiplicative correction
approach or combi ned,

zerot h_order

or

first_order

or

second_or der
Use of gradient use_- none Optional gradient data not
data in global gradi ents used in global
approximation approximation
builds builds

Table 7.9: Specification detail for global approximation interfaces: build and correction controls

7.5.2 Multipoint approximation interface

Multipoint approximations use data from previous design points to improve the accuracy of local approxi-
mations. This specification is a placeholder for future capability as no multipoint approximation algorithms
are currently available. Table 7.10 summarizes the multipoint approximation interface specifications.

Description Keyword Associated Data | Status Default
Multipoint mul ti poi nt none Required group N/A
approximation (1 of 4 selections)

interface

Pointer to the actual _- string Required N/A
truth interface interface_-

specification poi nt er

Table 7.10: Specification detail for multipoint approximation interfaces

7.5.3 Local approximation interface

Local approximations use value, gradient, and possibly Hessian data from a single point to form a series
expansion for approximating data in the vicinity of this point. The currently available local approxima-
tion is the t ayl or _seri es selection, which may be either first-order or second-order. The order is
automatically determined from the gradient and Hessian specifications in the responses specification (see
Gradient Specification and Hessian Specification) for the truth model.

Therequiredact ual _i nt er f ace_poi nt er specification and the optionalact ual i nterface_-
responses_poi nt er specification are the additional inputs for local approximations. The former
points to an interface specification which provides the truth model for generating the value and gradient

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

106 Interface Commands

data used in the series expansion. And the latter can be used to employ a different responses specifica-
tion for the truth model than that used for mappings from the local approximation. For example, the truth
model may generate gradient data using finite differences (as specified in the responses specification iden-
tified by act ual _i nterface_responses_poi nt er), whereas the local approximation may return
(approximate) analytic gradients (as specified in a different responses specification which is identified by
the method using the local approximation as its interface). If act ual _i nterface_responses_-
poi nt er is not specified, then the response set available from truth model evaluations and approximation
interface mappings will be the same. Table 7.11 summarizes the local approximation interface specifica-
tions.

Description Keyword Associated Data | Status Default

Local | ocal none Required group N/A

approximation (1 of 4 selections)

interface

Taylor series tayl or _- none Required N/A

local series

approximation

Pointer to the actual _- string Required N/A

truth interface interface_ -

specification poi nt er

Pointer to the actual _- string Optional reuse of

truth responses interface._- responses

specification responses._- specification in
poi nt er truth model

Table 7.11: Specification detail for local approximation interfaces

7.5.4 Hierarchical approximation interface

Hierarchical approximations use corrected results from a low fidelity interface as an approximation to the
results of a high fidelity "truth” model. These approximations are also known as model hierarchy, mul-
tifidelity, variable fidelity, and variable complexity approximations. The required | ow fi delity_-
i nterface_poi nt er specification points to the low fidelity interface specification. This interface
is used to generate low fidelity responses which are then corrected and returned to an iterator. The re-
quired hi gh_fidelity interface_pointer specification points to the interface specification for
the high fidelity truth model. This model is used only for verifying low fidelity results and updating low
fidelity corrections. The cor r ect i on specification specifies which correction technique will be applied
to the low fidelity results in order to match the high fidelity results at one or more points. In the hierarchical
case (as compared to the global case), the cor r ect i on specification is required, since the omission of
a correction technique would effectively waste all high fidelity evaluations. If it is desired to use a low
fidelity model without corrections, then a hierarchical approximation is not needed and a single application
interface should be used. Refer to Global approximation interface for additional information on available
correction approaches. Table 7.12 summarizes the hierarchical approximation interface specifications.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

7.5 Approximation Interface

107

first_order
or
second_order

Description Keyword Associated Data | Status Default
Hierarchical hi erar chi cal | none Required group N/A
approximation (1 of 4 selections)
interface
Pointer to the low | | ow_- string Required N/A
fidelity interface fidelity_-
specification interface_-
poi nt er

Pointer to the hi gh_- string Required N/A
high fidelity fidelity -
interface interface_-
specification poi nt er
Surrogate correction additive or Required N/A
correction nmul tiplicative
approach or conmbi ned,

zerot h_order

or

Table 7.12: Specification detail for hierarchical approximation interfaces

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

108 Interface Commands

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 8

Responses Commands

8.1 Responses Description

The responses specification in a DAKOTA input file specifies the data set that can be recovered from the in-
terface after the completion of a "function evaluation." Here, the term function evaluation is used somewhat
loosely to denote a data request from an iterator that is mapped through an interface in a single pass. Strictly
speaking, this data request may actually involve multiple response functions and their derivatives, but the
term function evaluation is widely used for this purpose. The data set is made up of a set of functions, their
first derivative vectors (gradients), and their second derivative matrices (Hessians). This abstraction pro-
vides a generic data container (the Response class) whose contents are interpreted differently depending
upon the type of iteration being performed. In the case of optimization, the set of functions consists of one
or more objective functions, nonlinear inequality constraints, and nonlinear equality constraints. Linear
constraints are not part of a response set since their coefficients can be communicated to an optimizer at
start up and then computed internally for all function evaluations (see Method Independent Controls). In
the case of least squares iterators, the functions consist of individual residual terms (as opposed to a sum
of the squares objective function) as well as nonlinear inequality and equality constraints. In the case of
nondeterministic iterators, the function set is made up of generic response functions for which the effect of
parameter uncertainty is to be quantified. Lastly, parameter study and design of experiments iterators may
be used with any of the response data set types. Within the C++ implementation, the same data structures
are reused for each of these cases; only the interpretation of the data varies from iterator branch to iterator
branch.

Gradient availability may be described by no_gr adi ent s, nuneri cal _gradi ents,anal ytic_-
gradi ent s, orm xed_gr adi ents. The no_gr adi ent s selection means that gradient information
is not needed in the study. The numeri cal _gr adi ent s selection means that gradient information is
needed and will be computed with finite differences using either the native or one of the vendor finite dif-
ferencing routines. The anal yti c_gr adi ent s selection means that gradient information is available
directly from the simulation (finite differencing is not required). And the ni xed_gr adi ent s selection
means that some gradient information is available directly from the simulation whereas the rest will have
to be estimated with finite differences.

Hessian availability may be described by no_hessi ans oranal yti c_hessi ans where the meanings
are the same as for the corresponding gradient availability settings. Numerical Hessians are not currently
supported, since, in the case of optimization, this would imply a finite difference-Newton technique for
which a direct algorithm already exists. Capability for numerical Hessians can be added in the future if the
need arises.

110 Responses Commands

The responses specification provides a description of the total data set that is available for use by the iterator
during the course of its iteration. This should be distinguished from the data subset described in an active
set vector (see DAKOTA File Data Formats in the Users Manual) which describes the particular subset of
the response data needed for an individual function evaluation. In other words, the responses specification
is a broad description of the data to be used during a study whereas the active set vector describes the
particular subset of the available data that is currently needed.

Several examples follow. The first example shows an optimization data set containing an objective function
and two nonlinear inequality constraints. These three functions have analytic gradient availability and no
Hessian availability.

responses, \

num obj ective_functions = 1 \

num nonl i near _inequality_constraints = 2\
anal ytic_gradients \

no_hessi ans

The next example shows a typical specification for a least squares data set. The six residual functions will
have numerical gradients computed using the dakota finite differencing routine with central differences of
0.1% (plus/minus delta value = .001xvalue).

responses, \
num | east _squares_ternms = 6 \
nunerical _gradients \
met hod_sour ce dakot a \
interval _type central \
fd_step_size = .001 \
no_hessi ans

The last example shows a specification that could be used with a nondeterministic iterator. The three
response functions have no gradient or Hessian availability; therefore, only function values will be used by
the iterator.

responses, \
num response_functions = 3\
no_gradi ents \

no_hessi ans

Parameter study and design of experiments iterators are not restricted in terms of the response data sets
which may be catalogued; they may be used with any of the function specification examples shown above.

8.2 Responses Specification

The responses specification has the following structure:

responses, \
<set identifier>\
<response descri ptors>\
<function specification>\
<gradi ent specification>\
<Hessi an specification>

Referring to dakota.input.spec, it is evident from the enclosing brackets that the set identifier and response
descriptors are optional. However, the function, gradient, and Hessian specifications are all required spec-
ifications, each of which contains several possible specifications separated by logical OR’s. The function
specification must be one of three types:

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

8.3 Responses Set Identifier 111

e objective and constraint functions
e least squares terms and constraint functions

e generic response functions

The gradient specification must be one of four types:

no gradients

numerical gradients

analytic gradients

mixed gradients
And the Hessian specification must be one of two types:

e no Hessians

e analytic Hessians

The following sections describe each of these specification components in additional detail.

8.3 Responses Set Identifier

The optional set identifier specification uses the keywordi d_r esponses to input a string for use in iden-
tifying a particular responses specification. A method can then identify the use of this response set by speci-
fying the same string in its r esponses_poi nt er specification (see Method Independent Controls). For
example, a method whose specification contains r esponses_poi nter = ' R1’ will use a responses
setwithi d_responses = 'R1l’.

If the i d_r esponses specification is omitted, a particular responses specification will be used by a
method only if that method omits specifying a r esponses_poi nt er and if the responses set was the
last set parsed (or is the only set parsed). In common practice, if only one responses set exists, theni d_-
r esponses can be safely omitted from the responses specification and r esponses_poi nt er can be
omitted from the method specification(s), since there is no potential for ambiguity in this case. Table 8.1
summarizes the set identifier input.

Description Keyword Associated Data | Status Default
Responses set i d_responses | string Optional use of last
identifier responses parsed

Table 8.1: Specification detail for set identifier

8.4 Response Labels

The optional response labels specification uses the keyword r esponse_descri pt or s to input a list
of strings which will be replicated through the DAKOTA output to help identify the numerical values
for particular response functions. The default descriptor strings use a root string plus a numeric iden-
tifier. This root string is " obj _f n" for objective functions, "1 east _sq_t ermi' for least squares

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

112 Responses Commands

terms, " r esponse_f n" for generic response functions, " nl n_i neq_con" for nonlinear inequality
constraints, and " nl n_eq_con" for nonlinear equality constraints. Table 8.2 summarizes the response
descriptors input.

Description Keyword Associated Data | Status Default |
Response labels response_- list of strings Optional root strings plus
descriptors numeric
identifiers

Table 8.2: Specification detail for response labels

8.5 Function Specification

The function specification must be one of three types: 1) a group containing objective and constraint
functions, 2) a group containing least squares terms and constraint functions, or 3) a generic response
functions specification. These function sets correspond to optimization, least squares, and uncertainty
quantification iterators, respectively. Parameter study and design of experiments iterators may be used
with any of the three function specifications.

8.5.1 Objective and constraint functions (optimization data set)

An optimization data set is specified using num obj ecti ve_f uncti ons and optionally nul ti _-
obj ective_weights, numnonlinear_inequality constraints, nonlinear_-
i nequal ity_| ower _bounds, nonl i near _i nequal i ty_upper _bounds, num -
nonlinear _equality constraints, and nonlinear_equality targets. The
num obj ective_functions, numnonlinear_inequality constraints, and num -
nonl i near _equal i ty_constrai nt s inputs specify the number of objective functions, nonlinear
inequality constraints, and nonlinear equality constraints, respectively. The number of objective functions
must be 1 or greater, and the number of inequality and equality constraints must be O or greater. If the
number of objective functions is greater than 1, then a mul ti _obj ecti ve_wei ght s specification
provides a simple weighted-sum approach to combining multiple objectives:

f= Zwifz'
i=1

If this is not specified, then each objective function is given equal weighting:
i
f= ; -

The nonlinear_inequality_ | ower_bounds and nonlinear_inequality_ upper_ -
bounds specifications provide the lower and upper bounds for 2-sided nonlinear inequalities of the
form

g <9() <gu

The defaults for the inequality constraint bounds are selected so that one-sided inequalities of the form

g(z) <0.0

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

8.5 Function Specification 113

result when there are no user constraint bounds specifications (this provides backwards compatibility with
previous DAKOTA versions). In a user bounds specification, any upper bound values greater than +bi g-

Real BoundSi ze (1.e+30, as defined in OptLeastSq) are treated as +infinity and any lower bound values
less than - bi gReal BoundSi ze are treated as -infinity. This feature is commonly used to drop one of the
bounds in order to specify a 1-sided constraint (just as the default lower bounds drop out since - DBL_ -

MAX < - bi gReal BoundSi ze). The same approach is used for nonexistent linear inequality bounds
as described in Method Independent Controls and for nonexistent design variable bounds as described in
Design Variables.

Thenonl i near _equal i ty_t ar get s specification provides the targets for nonlinear equalities of the

form

9(x) = gt

and the defaults for the equality targets enforce a value of 0. for each constraint

g(z) =0.0

Any linear constraints present in an application need only be input to an optimizer at start up and do not
need to be part of the data returned on every function evaluation (see the linear constraints description in
Method Independent Controls). Table 8.3 summarizes the optimization data set specification.

Description Keyword Associated Data | Status Default
Number of num - integer Required group N/A
objective obj ective_-
functions functions
Multiobjective mul ti_- list of reals Optional equal weightings
weightings obj ective_-
wei ght s
Number of num - integer Optional 0
nonlinear nonl i near _-
inequality inequal ity -
constraints constraints
Nonlinear nonl i near _- list of reals Optional vector values =
inequality inequal ity - - DBL_MAX
constraint lower | ower bounds
bounds
Nonlinear nonl i near _- list of reals Optional vector values = 0.
inequality inequal ity -
constraint upper upper _bounds
bounds
Number of num - integer Optional 0
nonlinear nonl i near _-
equality equality_-
constraints constraints
Nonlinear nonl i near _- list of reals Optional vector values = 0.
equality equality_-
constraint targets | targets

Table 8.3: Specification detail for optimization data sets

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

114 Responses Commands

8.5.2 Least squarestermsand constraint functions (least squares data set)

A least squares data set is specified using num | east _squares_t erns and optionally num -
nonl i near _i nequality_constraints, nonl i near _i nequal ity_I ower _bounds,
nonl i near i nequal ity _upper _bounds, numnonlinear_equality constraints,
and nonl i near _equal ity _targets. Each of the least squares terms is a residual function to
be driven toward zero, and the nonlinear inequality and equality constraint specifications have identical
meanings to those described in Objective and constraint functions (optimization data set). These types
of problems are commonly encountered in parameter estimation, system identification, and model
calibration. Least squares problems are most efficiently solved using special-purpose least squares solvers
such as Gauss-Newton or Levenberg-Marquardt; however, they may also be solved using general-purpose
optimization algorithms. It is important to realize that, while DAKOTA can solve these problems with
either least squares or optimization algorithms, the response data sets to be returned from the simulator
are different. Least squares involves a set of residual functions whereas optimization involves a single
objective function (sum of the squares of the residuals), i.e.

where f is the objective function and the set of R; are the residual functions. Therefore, function values
and derivative data in the least squares case involves the values and derivatives of the residual functions,
whereas the optimization case involves values and derivatives of the sum of the squares objective func-
tion. Switching between the two approaches will likely require different simulation interfaces capable of
returning the different granularity of response data required. Table 8.4 summarizes the least squares data
set specification.

Description Keyword Associated Data | Status Default
Number of least num | east _- integer Required N/A
squares terms squares_-
terns
Number of num - integer Optional 0
nonlinear nonl i near _-
inequality i nequality_-
constraints constraints
Nonlinear nonl i near _- list of reals Optional vector values =
inequality i nequality_- - DBL_MAX
constraint lower | ower bounds
bounds
Nonlinear nonl i near _- list of reals Optional vector values = 0.
inequality i nequality_-
constraint upper upper _bounds
bounds
Number of num - integer Optional 0
nonlinear nonl i near _-
equality equality -
constraints constraints
Nonlinear nonl i near _- list of reals Optional vector values = 0.
equality equality_-
constraint targets | targets

Table 8.4: Specification detail for nonlinear least squares data sets

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

8.6 Gradient Specification 115

8.5.3 Responsefunctions (generic data set)

A generic response data set is specified using num r esponse_f unct i ons. Each of these functions is
simply a response quantity of interest with no special interpretation taken by the method in use. This type
of data set is used by uncertainty quantification methods, in which the effect of parameter uncertainty on re-
sponse functions is quantified, and can also be used in parameter study and design of experiments methods
(although these methods are not restricted to this data set), in which the effect of parameter variations on
response functions is evaluated. Whereas objective, constraint, and residual functions have special mean-
ings for optimization and least squares algorithms, the generic response function data set need not have
a specific interpretation and the user is free to define whatever functional form is convenient. Table 8.5
summarizes the generic response function data set specification.

Description Keyword Associated Data | Status Default
Number of num - integer Required N/A
response response_-

functions functions

Table 8.5: Specification detail for generic response function data sets

8.6 Gradient Specification

The gradient specification must be one of four types: 1) no gradients, 2) numerical gradients, 3) analytic
gradients, or 4) mixed gradients.

8.6.1 Nogradients

The no_gr adi ent s specification means that gradient information is not needed in the study. Therefore,
it will neither be retrieved from the simulation nor computed with finite differences. The no_gr adi ent s
keyword is a complete specification for this case.

8.6.2 Numerical gradients

The nuneri cal _gr adi ent s specification means that gradient information is needed and will be com-
puted with finite differences using either the native or one of the vendor finite differencing routines.

The net hod_sour ce setting specifies the source of the finite differencing routine that will be used to
compute the numerical gradients: dakot a denotes DAKOTA’s internal finite differencing algorithm and
vendor denotes the finite differencing algorithm supplied by the iterator package in use (DOT, CONMIN,
NPSOL, NL2SOL, NLSSOL, and OPT++ each have their own internal finite differencing routines). The
dakot a routine is the default since it can execute in parallel and exploit the concurrency in finite differ-
ence evaluations (see Exploiting Parallelism in the Users Manual). However, the vendor setting can be
desirable in some cases since certain libraries will modify their algorithm when the finite differencing is
performed internally. Since the selection of the dakot a routine hides the use of finite differencing from
the optimizers (the optimizers are configured to accept user-supplied gradients, which some algorithms
assume to be of analytic accuracy), the potential exists for the vendor setting to trigger the use of an
algorithm more optimized for the higher expense and/or lower accuracy of finite-differencing. For exam-
ple, NPSOL uses gradients in its line search when in user-supplied gradient mode (since it assumes they
are inexpensive), but uses a value-based line search procedure when internally finite differencing. The
use of a value-based line search will often reduce total expense in serial operations. However, in parallel

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

116 Responses Commands

operations, the use of gradients in the NPSOL line search (user-supplied gradient mode) provides excel-
lent load balancing without need to resort to speculative optimization approaches. In summary, then, the
dakot a routine is preferred for parallel optimization, and the vendor routine may be preferred for serial
optimization in special cases.

The i nt er val _t ype setting is used to select between f or war d and cent r al differences in the nu-
merical gradient calculations. The dakot a, DOT vendor, and OPT++ vendor routines have both
forward and central differences available, the CONMIN and NL2SOL vendor routines support forward
differences only, and the NPSOL and NLSSOL vendor routines start with forward differences and auto-
matically switch to central differences as the iteration progresses (the user has no control over this).

Lastly, f d_st ep_si ze specifies the relative finite difference step size to be used in the computations.
Either a single value may be entered for use with all parameters, or a list of step sizes may be entered, one
for each parameter. The latter option of a list of step sizes is only valid for use with the DAKOTA finite
differencing routine. For DAKOTA, DOT, CONMIN, and OPT++, the differencing intervals are computed
by multiplying the f d_st ep_si ze with the current parameter value. In this case, a minimum absolute
differencing interval is needed when the current parameter value is close to zero. This prevents finite dif-
ference intervals for the parameter which are too small to distinguish differences in the response quantities
being computed. DAKOTA, DOT, CONMIN, and OPT++all use . 01xf d_st ep_si ze as their minimum
absolute differencing interval. With afd_st ep_si ze = . 001, for example, DAKOTA, DOT, CON-
MIN, and OPT++ will use intervals of .001«current value with a minimum interval of 1.e-5. NPSOL and
NLSSOL use a different formula for their finite difference intervals: f d_st ep_si zex(1+|current
par anet er val uel). This definition has the advantage of eliminating the need for a minimum abso-
lute differencing interval since the interval no longer goes to zero as the current parameter value goes to
zero. Table 8.6 summarizes the numerical gradient specification.

Description Keyword Associated Data | Status Default

Numerical nunerical _- none Required group N/A

gradients gradi ents

Method source nmet hod_- dakot a | Optional group dakot a
source vendor

Interval type i nterval _- forward | Optional group forward
type central

Finite difference fd_step_size | listof reals Optional 0. 001

step size

Table 8.6: Specification detail for numerical gradients

8.6.3 Analytic gradients

The anal yti c_gr adi ent s specification means that gradient information is available directly from
the simulation (finite differencing is not required). The simulation must return the gradient data in the
DAKOTA format (enclosed in single brackets; see DAKOTA File Data Formats in the Users Manual) for
the case of file transfer of data. The anal yti c_gradi ent s keyword is a complete specification for
this case.

8.6.4 Mixed gradients

The mi xed_gr adi ent s specification means that some gradient information is available directly from
the simulation (analytic) whereas the rest will have to be finite differenced (numerical). This specification

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

8.7 Hessian Specification 117

allows the user to make use of as much analytic gradient information as is available and then finite differ-
ence for the rest. For example, the objective function may be a simple analytic function of the design vari-
ables (e.g., weight) whereas the constraints are nonlinear implicit functions of complex analyses (e.g., max-
imum stress). The i d_anal yti c list specifies by number the functions which have analytic gradients,
andthei d_nuneri cal list specifies by number the functions which must use numerical gradients. Each
function identifier, from 1 through the total number of functions, must appear once and only once within
the union of the i d_anal ytic and i d_nuneri cal lists. The net hod_source, i nterval _-
type,andf d_st ep_si ze specifications are as described previously in Numerical gradients and pertain
to those functions listed by thei d_numeri cal list. Table 8.7 summarizes the mixed gradient specifica-
tion.

Description Keyword Associated Data | Status Default

Mixed gradients m xed_- none Required group N/A
gradi ents

Analytic id_analytic list of integers Required N/A

derivatives

function list

Numerical i d_nunerical | list of integers Required N/A

derivatives

function list

Method source nmet hod_- dakot a | Optional group dakot a
source vendor

Interval type i nterval - forward | Optional group forward
type central

Finite difference fd _step_size | listof reals Optional 0. 001

step size

Table 8.7: Specification detail for mixed gradients

8.7 Hessian Specification

Hessian availability must be specified with either no_hessi ans oranal yti c_hessi ans. Numerical
Hessians are not currently supported, since, in the case of optimization, this would imply a finite difference-
Newton technique for which a direct algorithm already exists. Capability for numerical Hessians can be
added in the future if the need arises.

871 NoHessians

Theno_hessi ans specification means that the method does not require DAKOTA to manage the compu-
tation of any Hessian information. Therefore, it will neither be retrieved from the simulation nor computed
by DAKOTA. The no_hessi ans keyword is a complete specification for this case. Note that, in some
cases, Hessian information may still be being approximated internal to an algorithm (e.g., via a BFGS up-
date within a quasi-Newton optimizer); however, DAKOTA has no direct involvement in this process and
the responses specification need not include it.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

118 Responses Commands

8.7.2 Analytic Hessians

The anal yti c_hessi ans specification means that Hessian information is available directly from the
simulation. The simulation must return the Hessian data in the DAKOTA format (enclosed in double
brackets; see DAKOTA File Data Formats in Users Manual) for the case of file transfer of data. The
anal yti c_hessi ans keyword is a complete specification for this case.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 9

References

Anderson, G., and Anderson, P., 1986 The UNIX C Shell Field Guide, Prentice-Hall, Englewood
Cliffs, NJ.

Argaez, M., Tapia, R. A., and Velazquez, L., 2002. "Numerical Comparisons of Path-Following
Strategies for a Primal-Dual Interior-Point Method for Nonlinear Programming”, Journal of Opti-
mization Theory and Applications, Vol. 114 (2).

Byrd, R. H., Schnabel, R. B., and Schultz, G. A., 1988. "Parallel quasi-Newton Methods for Un-
constrained Optimization," Mathematical Programming, 42(1988), pp. 273-306.

Eddy, J. E. and Lewis, K., 2001. "Effective Generation of Pareto Sets using Genetic Programming,"
Proceedings of ASME Design Engineering Technical Conference.

El-Bakry, A. S., Tapia, R. A, Tsuchiya, T., and Zhang, Y., 1996. "On the Formulation and Theory
of the Newton Interior-Point Method for Nonlinear Programming,” Journal of Optimization Theory
and Applications, (89) pp. 507-541.

Eldred, M. S., Giunta, A. A., Swiler, L. P., Wojtkiewicz, S. F., Jr., Hart, W. E., Watson, J.-P., Gay,
D. M., and Brown, S. L., 2004. "DAKOTA: A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis.
Version 3.2 Users Manual," Sandia Technical Report SAND2001-3796, updated July 2004.

Eldred, M. S., Giunta, A. A., Collis, S. S., Alexandrov, N. A., and Lewis, R. M., 2004. "Second-
Order Corrections for Surrogate-Based Optimization with Model Hierarchies," to appear in Proceed-
ings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY,
Aug. 30 - Sept. 1.

Eldred, M.S., Agarwal, H., Perez, V.M., Wojtkiewicz, S.F., Jr., and Renaud, J.E., 2004. "Investiga-
tion of Reliability Method Formulations in DAKOTA/UQ," to appear in Proceedings of the 9th ASCE
Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability, Albuquerque, NM,
July 26-28.

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H., 1986. "User’s Guide for NPSOL
(\Version 4.0): A Fortran Package for Nonlinear Programming," System Optimization Laboratory
Technical Report SOL-86-2, Stanford University, Stanford, CA.

120

References

Haftka, R. T., 1991. "Combining Global and Local Approximations," AIAA Journal, Vol. 29, No.
9, pp. 1523-1525.

Haldar, A., and Mahadevan, S., 2000. Probability, Reliability, and Statistical Methods in Engineer-
ing Design, John Wiley and Sons, New York.

Hart, W. E., 2001a. "SGOPT User Manual: Version 2.0," Sandia Technical Report SAND2001-
3789.

Hart, W. E., 2001b. "SGOPT Reference Manual: Version 2.0," Sandia Technical Report
SAND2001-XXXX, In Preparation.

Hart, W. E., Giunta, A. A, Salinger, A. G., and van Bloemen Waanders, B. G., 2001. "An Overview
of the Adaptive Pattern Search Algorithm and its Application to Engineering Optimization Prob-
lems," abstract in Proceedings of the McMaster Optimization Conference: Theory and Applications,
McMaster University, Hamilton, Ontario, Canada.

Hart, W. E., and Hunter, K. O., 1999. "A Performance Analysis of Evolutionary Pattern Search with
Generalized Mutation Steps," Proc Conf Evolutionary Computation, pp. 672-679.

Hough, P. D., Kolda, T. G., and Torczon, V. J., 2000. "Asynchronous Parallel Pattern Search for
Nonlinear Optimization," Sandia Technical Report SAND2000-8213, Livermore, CA.

Iman, R. L., and Conover, W. J., 1982. "A Distribution-Free Approach to Inducing Rank Correlation
Among Input Variables," Communications in Statistics: Simulation and Computation, Vol. B11, no.
3, pp. 311-334.

Lewis, R. M., and Nash, S. G., 2000. "A Multigrid Approach to the Optimization of
Systems Governed by Differential Equations,” paper AIAA-2000-4890 in Proceedings of the
8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long
Beach, CA, Sept. 6-8.

Meza, J. C., 1994. "OPT++: An Object-Oriented Class Library for Nonlinear Optimization," Sandia
Report SAND94-8225, Sandia National Laboratories, Livermore, CA.

More, J., and Thuente, D., 1994. "Line Search Algorithms with Guaranteed Sufficient Decrease,"
ACM Transactions on Mathematical Software 20(3):286-307.

Sjaardema, G. D., 1992. "APREPRO: An Algebraic Preprocessor for Parameterizing Finite Element
Analyses," Sandia National Laboratories Technical Report SAND92-2291, Albuquerque, NM.

Tapia, R. A., and Argaez, M., "Global Convergence of a Primal-Dual Interior-Point Newton Method
for Nonlinear Programming Using a Modified Augmented Lagrangian Function”. (In Preparation).

Vanderbei, R. J., and Shanno, D. F,, 1999. "An interior-point algorithm for nonconvex nonlinear
programming", Computational Optimization and Applications, 13:231-259.

Vanderplaats, G. N., 1973. "CONMIN - A FORTRAN Program for Constrained Function Mini-
mization," NASA TM X-62282. (see also: Addendum to Technical Memorandum, 1978).

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

121

e Vanderplaats Research and Development, Inc., 1995. "DOT Users Manual, Version 4.20," Colorado
Springs.

e Weatherby, J. R., Schutt, J. A., Peery, J. S., and Hogan, R. E., 1996. "Delta: An Object-Oriented
Finite Element Code Architecture for Massively Parallel Computers,” Sandia Technical Report
SAND96-0473.

e Wright, S. J., 1997. "Primal-Dual Interior-Point Methods", SIAM.

e Wyss, G. D., and Jorgensen, K. H., 1998. "A User s Guide to LHS: Sandia’s Latin Hypercube
Sampling Software," Sandia National Laboratories Technical Report SAND98-0210, Albuquerque,
NM.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

	DAKOTA Reference Manual
	Introduction
	Input Specification Reference
	Web Resources

	DAKOTA File Documentation
	dakota.input.spec File Reference

	Commands Introduction
	Overview
	IDR Input Specification File
	Common Specification Mistakes
	Sample dakota.in Files
	Tabular descriptions

	Strategy Commands
	Strategy Description
	Strategy Specification
	Strategy Independent Controls
	Multilevel Hybrid Optimization Commands
	Surrogate-based Optimization (SBO) Commands
	Optimization Under Uncertainty Commands
	Branch and Bound Commands
	Multistart Iteration Commands
	Pareto Set Optimization Commands
	Single Method Commands

	Method Commands
	Method Description
	Method Specification
	Method Independent Controls
	DOT Methods
	NPSOL Method
	CONMIN Methods
	OPT++ Methods
	SGOPT Methods
	COLINY Methods
	JEGA Methods
	Least Squares Methods
	Nondeterministic Methods
	Design of Computer Experiments Methods
	Parameter Study Methods

	Variables Commands
	Variables Description
	Variables Specification
	Variables Set Identifier
	Design Variables
	Uncertain Variables
	State Variables

	Interface Commands
	Interface Description
	Interface Specification
	Interface Set Identifier
	Application Interface
	Approximation Interface

	Responses Commands
	Responses Description
	Responses Specification
	Responses Set Identifier
	Response Labels
	Function Specification
	Gradient Specification
	Hessian Specification

	References

